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7.7. The Inspection Paradox

Given a renewal process {N(t), t ≥ 0} with interarrival times
{Xi , i ≥ 1}, the length of the current cycle,

XN(t)+1 = SN(t)+1 − SN(t)

tend to be longer than Xi , the length of an ordinary cycle.

Precisely speaking, XN(t)+1 is stochastically greater than Xi , which
means

P(XN(t)+1 > x) ≥ P(Xi > x), for all x ≥ 0.
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Heuristic Explanation of the Inspection Paradox
Suppose we pick a time t uniformly in the range [0,T ], and then
select the cycle that contains t.

I The list of possible cycles to select is X1,X2, . . . ,XN(T )+1

I These cycles are not equally likely to be selected.
The longer the cycle, the greater the chance.

P(Xi is selected) = Xi/T , for 1 ≤ i ≤ N(T )

I So the expected length of the selected cycle XN(t)+1 is roughly

N(T )∑
i=1

Xi ×
Xi

T
=

∑N(T )
i=1 X 2

i

T
→

E[X 2
i ]

E[Xi ]
≥ E[Xi ] as T →∞.

I Last time we have shown that if F is non-lattice,

lim
t→∞

E[Y (t)] = lim
t→∞

E[A(t)] =
E[X 2

i ]

2E[Xi ]
,

Since XN(t)+1 = A(t) + Y (t), limt→∞ E[XN(t)+1] =
E[X 2

i ]

E[Xi ]
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Example: Bus Waiting Time

I Passengers arrive at a bus station at Poisson rate λ

I Buses arrive one after another according to a renewal process
with interarrival times Xi , i ≥ 1, independent of the arrival of
customers.

I If Xi = 10min is deterministic, then on average, a passenger
has to wait 5 min.

I If Xi is random with mean 10 min, then for a passenger arrive
at the bus station at time t, the amount of time to wait is
Y (t), the residual life of the bus arrival process. We know that

E[Y (t)]→
E[X 2

i ]

2E[Xi ]
≥ E[Xi ]

2
= 5 min.

Passengers on average will wait longer than half of the
average interarrival time of buses.
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Example: Crowded Buses
I Passengers arrive at a bus station at Poisson rate λ
I Empty buses arrive one after another according to a renewal

process with interarrival times {Xi , i ≥ 1}, independent of the
arrival of customers, and E[Xi ] = µ.

I Each bus departs practically immediately carrying all
passengers waiting in line.

I Let Mi = the # of passengers on the i-th bus.
Note that given Xi , Mi ∼ Poisson(λXi ) and hence

E[Mi ] = E[E[Mi |Xi ]] = E[λXi ] = λµ

I If you arrive at the station at time t, you will get on the
(N(t) + 1)st bus with MN(t)+1 passengers.

I Is E[MN(t)+1] = E[Mi ] = λµ?
No. Given XN(t)+1, MN(t)+1 ∼ Poisson(λXN(t)+1)

E[MN(t)+1] = E[E[MN(t)+1|XN(t)+1]]

= E[λXN(t)+1] = λ
E[X 2

i ]

E[Xi ]
≥ λE[Xi ]
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Proof of the Inspection Paradox
For s > x ,

P(XN(t)+1 > x |SN(t) = t − s,N(t) = i) = 1 ≥ P(Xi > x)

For s < x ,

P(XN(t)+1 > x |SN(t) = t − s,N(t) = i)

= P(Xi+1 > x |Si = t − s)

= P(Xi+1 > x |Xi+1 > s)

=
P(Xi+1 > x , Xi+1 > s)

P(Xi+1 > s)

=
P(Xi+1 > x)

P(Xi+1 > s)

≥ P(Xi+1 > x) = P(Xi > x)

Thus P(XN(t)+1 > x |SN(t) = t − s,N(t) = i) ≥ P(Xi > x) for all
N(t) and SN(t). The claim is validated

STAT253/317 2013 Winter Lecture 18 - 6

Limiting Distribution of XN(t)+1

If the distribution F of the interarrival times is non-lattice, we can
use an alternating renewal process argument to determine

G (x) = lim
t→∞

P(XN(t)+1 ≤ x).

We say the renewal process is ON at time t iff XN(t)+1 ≤ x , and
OFF otherwise. Thus in the ith cycle,

the length of ON time is

{
Xi if Xi ≤ x , and

0 otherwise

and hence

G (x) = lim
t→∞

P(XN(t)+1 ≤ x) =
E[On time in a cycle]

E[cycle time]

=
E[Xi1{Xi≤x}]

E[Xi ]
=

∫ x
0 zf (z)dz

µ

In fact G (x) = − x(1−F (x))
µ + Fe(x) < Fe(x).
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Chapter 8 Queueing Models

A queueing model consists “customers” arriving to receive some
service and then depart. The mechanisms involved are

I input mechanism: the arrival pattern of customers in time

I queueing mechanism: the number of servers, order of the
service

I service mechanism: the time to serve one or a batch of
customers

We consider queueing models that follow the most common rule of
service: first come, first served.
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Common Queueing Processes

It is often reasonable to assume

I the interarrival times of customers are i.i.d. (the arrival of
customers follows a renewal process),

I the service times for customers are i.i.d. and are independent
of the arrival of customers.

Notation: M = memoryless, or Markov, G = General

I M/M/1: Poisson arrival, service time ∼ Exp(µ), 1 server
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ µ

I M/M/∞: Poisson arrival, service time ∼ Exp(µ), ∞ servers
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ jµ

I M/M/k: Poisson arrival, service time ∼ Exp(µ), k servers
= a birth and death process with birth rates λj ≡ λ, and
death rates µj ≡ min(j , k)µ
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Common Queueing Processes (Cont’d)

I M/G/1: Poisson arrival, General service time ∼ G , 1 server

I M/G/∞: Poisson arrival, General service time ∼ G , ∞ server

I M/G/k : Poisson arrival, General service time ∼ G , k server

I G/M/1: General interarrival time, service time ∼ Exp(µ), 1
server

I G/G/k: General interarrival time ∼ F , General service time
∼ G , k servers

I . . .
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Quantities of Interest for Queueing Models
Let

X (t) = number of customers in the system at time t

Q(t) = number of customers waitng in queue at time t

Assume that {X (t), t ≥ 0} and {Q(t), t ≥ 0} has a stationary
distribution.

I L = the average number of customers in the system

L = lim
t→∞

∫ t
0 X (t)dt

t
;

I LQ = the average number of customers waiting in queue (not
being served);

Q = lim
t→∞

∫ t
0 Q(t)dt

t
;

I W = the average amount of time, including the time waiting
in queue and service time, a customer spends in the system;

I WQ = the average amount of time a customer spends waiting
in queue (not being served).
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Little’s Formula

Let

N(t) = number of customers enter the system at or before time t.

We define λa be the arrival rate of entering customers,

λa = lim
t→∞

N(t)

t

Little’s Formula:

L = λaW

LQ = λaWQ
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Cost Identity
Many of interesting and useful relationships between quantities in
Queueing models can be obtained by using the cost identity.
Imagine that entering customers are forced to pay money
(according to some rule) to the system. We would then have the
following basic cost identity:

average rate at which the system earns

= λa × average amount an entering customer pays

Proof. Let R(t) be the amount of money the system has earned by
time t. Then we have

average rate at which the system earns

= lim
t→∞

R(t)

t
= lim

t→∞

N(t)

t

R(t)

N(t)
= λa lim

t→∞

R(t)

N(t)

= λa × average amount an entering customer pays,

provided that the limits exist.
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Proof of Little’s Formula
To prove L = λaW :

I we use the payment rule:

each customer pays $1 per unit time while in the system.

I the average amount customers pay = W , the average waiting
time of customers.

I the amount of money the system earns during the time
interval (t, t + ∆t) is X (t)∆t, where X (t) is the number of
customers in the system at time t ,

I and the rate the system earns is thus

limt→∞
∫ t
0 X (s)ds

t
= L,

the formula follows from the cost identity.

To prove LQ = λaWQ , we use the payment rule:

each customer pays $1 per unit time while in queue.

The argument is similar.
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