
Programming the GPU

 The challenge for the GPU programmer is not simply getting good

performance on the GPU, but also in coordinating the scheduling of

computation on the system processor and the GPU and the transfer of

data between system memory and GPU memory.

 NVIDIA decided to develop a C-like language and programming

environment that would improve the productivity of GPU programmers. .

The name of their system is CUDA, for Compute Unified Device

Architecture. CUDA produces C/C++ for the system processor (host) and

a C and C++ dialect for the GPU (device, hence the D in CUDA). A

similar programming language is OpenCL, which several companies are

developing to offer a vendor-independent language for multiple

platforms.

 NVIDIA decided that the unifying theme of all these forms of parallelism

is the CUDA Thread. the compiler and the hardware can gang thousands

of CUDA Threads together to utilize the various styles of parallelism

within a GPU: multithreading, MIMD, SIMD, and instruction-level

parallelism. Hence, NVIDIA classifies the CUDA programming model as

Single Instruction, Multiple Thread (SIMT).

 These threads are blocked together and executed in groups of 32 threads,

called a Thread Block. We call the hardware that executes a whole block

of threads a multithreaded SIMD Processor.

 We need just a few details before we can give an example of a CUDA

program:

■ To distinguish between functions for the GPU (device) and functions

for the system processor (host), CUDA uses _device_or_global_ for the

former and -host-for the latter.

■ CUDA variables declared as in the device or global functions are

allocated to the GPU Memory (see below), which is accessible by all

multi threaded SIMD processors.

■ The extended function call syntax for the function name that runs on

the GPU is name-dimGrid, dimBlock>>>(... parameter list ...)

where dimGrid and dimBlock specify the dimensions of the code (in

blocks) and the dimensions of a block (in threads).

■ In addition to the identifier for blocks (blockldx) and the identifier

for threads per block (threadIdx), CUDA provides a keyword for the

number of threads per block (blockDim), which comes from the dimBlock

parameter in the bullet above.

 Before seeing the CUDA code, let's start with conventional C code for the

DAXPY loop from Section 4.2:

// Invoke DAXPY

daxpy(n, 2.0, x, y);

// DAXPY in C

void daxpy(int n, double a, double *x, double *y)

{

for(int i=0; i< n;++i)

y[i]= a*x[i]+ y[i]

}

 Below is the CUDA version. We launch n threads, one per vector

element, with 256 CUDA Threads per thread block in a multithreaded

SIMD Processor. The GPU function starts by calculating the

corresponding element index i based on the block ID, the number of

threads per block, and the thread ID. As long as this index is within the

array (i< n), it performs the multiply and add.

 // Invoke DAXPY with 256 threads per Thread Block _-host-
 int nblocks =(n+255)/256;
 daxpy<<<nblocks,256>>>(n,2.0, x, y);
 // DAXPY in CUDA
_ device_
 void daxpy(int n, double a, double*x, double*y)
 {
 int i= blockIdx.x*blockDim.x+ threadIdx.x;
 if(i< n) y[i]= a*x[i]+ y[i];
 }

 Comparing the C and CUDA codes, we see a common pattern to

parallelizing data-parallel CUDA code. The C version has a loop where

each iteration is independent of the others, allowing the loop to be

transformed straightforwardly into a parallel code where each loop

iteration becomes an independent thread.

 The programmer determines the parallelism in CUDA explicitly by

specifying the grid dimensions and the number of threads per SIMD

Processor. By assigning a single thread to each element, there is no need

to synchronize among threads when writing results to memory.\

 The GPU hardware handles parallel execution and thread management; it

is not done by applications or by the operating system. To simplify

scheduling by the hardware, CUDA requires that thread blocks be able to

execute independently and in any order.

