
Vector Execution Time

 The execution time of a sequence of vector operations primarily depends

on three factors: (1) the length of the operand vectors, (2) structural

hazards among the operations, and (3) the data dependences. Given the

vector length and the initiation rate, which is the rate at which a vector

unit consumes new operands and produces new results, we can compute

the time for a single vector instruction. All modern vector computers have

vector functional units with multiple parallel pipelines (or lanes) that can

produce two or more results per clock cycle, but they may also have some

functional units that are not fully pipelined. For simplicity, our VMIPS

implementation has one lane with an initiation rate of one element per

clock cycle for individual operations. Thus, the execution time in clock

cycles for a single vector instruction is-approximately the vector length.

 A convoy, which is the set of vector instructions that could potentially

execute together. The instructions in a convoy must not contain any

structural hazards; if such hazards were present, the instructions would

need to be serialized and initiated in different convoys. To keep the

analysis simple, we assume that a convoy of instructions must complete

execution before any other instructions (scalar or vector) can begin

execution.

 vector instruction sequences with structural hazards, sequences with read-

after-write dependency hazards should also be in separate convoys, but

chaining allows them to be in the same convoy.

 Chaining allows a vector operation to start as soon as the individual

elements of its vector source operand become available: The results from

the first functional unit in the chain are "forwarded" to the second

functional unit. In practice, we often implement chaining by allowing the

processor to read and write a particular vector register at the same time,

albeit to different elements.

 Early implementations of chaining worked just like forwarding in scalar

pipelining, but this restricted the timing of the source and destination

instructions in the chain. Recent implementations use flexible chaining,

which allows a vector instruction to chain to essentially any other active

vector instruction, assuming that we don't generate a structural hazard.

 To turn convoys into execution time we need a timing metric to estimate

the time for a convoy. It is called a chime, which is simply the unit of

time taken to execute one convoy. Thus, a vector sequence that consists

of m convoys executes in m chimes; for a vector length of n, for VMIPS

this is approximately in x n clock cycles.

 Hence, measuring time in chimes is a better approximation for long

vectors than for short ones. We will use the chime measurement, rather

than clock cycles per result, to indicate explicitly that we are ignoring

certain overheads.

 If we know the number of convoys in a vector sequence, we know the

execution time in chimes.

Example:

Show how the following code sequence lays out in convoys, assuming a
single copy of each vector functional unit:
LV V1,Rx ;load vector X

 MLILVS.D V2,V1,F0 ;vector-scalar multiply
LV V3,Ry ;load vector Y
ADDVV.D V4,V2,V3 ;add two vectors
SV V4,Ry ;store the sum

How many chimes will this vector sequence take? How many
cycles per FLOP (floating-point operation) are needed,
ignoring vector instruction issue overhead?

 Answer:

 The first convoy starts with the first LV instruction. The MULVS. D is

dependent on the first LV, but chaining allows it to be in the same

convoy.

The second LV instruction must be in a separate convoy since there is a

structural hazard on the load/store unit for the prior LV instruction.

The ADDVV. D is dependent on the second LV, but it can again be in the

same convoy via chaining. Finally, the SV has a structural hazard on the

LV in the second convoy, so it must go in the third convoy. This analysis

leads to the following layout of vector instructions into convoys:

1. LV MULVS.D

2. LV ADDVV.D

3. SV

The sequence requires three convoys. Since the sequence takes three

chimes and there are two floating-point operations per result, the number

of cycles per FLOP is 1.5 (ignoring any vector instruction issue

overhead). Note that, although we allow the LV and MULVS.D both to

execute in the first convoy, most vector machines will take two clock

cycles to initiate the instructions.

This example shows that the chime approximation is reasonably accurate

for long vectors. For example, for 64-element vectors, the time in chimes

is 3, so the sequence would take about 64 x 3 or 192 clock cycles. The

overhead of issuing convoys in two separate clock cycles would be small.

