
SIMD Instruction Set Extensions for Multimedia

 SIMD Multimedia Extensions started with the simple observation that

many media applications operate on narrower data types than the 32-bit

processors were optimized for. Many graphics systems used 8 bits to

represent each of the three primary colors plus 8 bits for transparency.

Depending on the application, audio samples are usually represented with

8 or 16 bits.

 By partitioning the carry chains within, say, a 256-bit adder, a processor

could perform simultaneous operations on short vectors of thirty-two 8-

bit operands, sixteen 16-bit operands, eight 32-bit operands, or four 64-bit

operands.

 Like vector instructions, a SIMD instruction specifies the same operation

on vectors of data. Unlike vector machines with large register files such

as the VMIPS vector register, which can hold as many as sixty-four 64-bit

elements in each of 8 vector registers, SIMD instructions tend to specify

fewer operands and hence use much smaller register files.

 In contrast to vector architectures, which offer an elegant instruction set

that is intended to be the target of a vectorizing compiler, SIMD

extensions have three major omissions:

 Instruction category Operands______________________

 Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

 Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

 Average Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

 Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit

 Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit

 Fig Summary of typical SIMD multimedia support for 256-bit-wide operations

 Multimedia SIMD extensions fix the number of data operands in the

opcode, which has led to the addition of hundreds of instructions in the

MMX, SSE, and AVX extensions of the x86 architecture. Vector

architectures have a vector length register that specifies the number of

operands for the current operation. These variable-length vector

registers easily accommodate programs that naturally have shorter vectors

than the maximum size the architecture supports.

 Multimedia SIMD does not offer the more sophisticated addressing

modes of vector architectures, namely strided accesses and gather-

scatter accesses. These features increase the number of programs that a

vector compiler can successfully vectorize.

 Multimedia SIMD usually does not offer the mask registers to support

conditional execution of elements as in vector architectures.

 For the x86 architecture, the MMX instructions added in 1996 repurposed

the 64-bit floating-point registers, so the basic instructions could perform

eight 8-bit operations or four 16-bit operations simultaneously. These

were joined by parallel MAX and MIN operations, a wide variety of

masking and conditional instructions, operations typically found in digital

signal processors, and ad hoc instructions that were believed to be useful

in important media libraries.

 The Streaming SIMD Extensions (SSE) successor in 1999 added separate

registers that were 128 bits wide, so now instructions could

simultaneously perform sixteen 8-bit operations, eight 16-bit operations,

or four 32-bit operations. It also performed parallel single-precision

floating-point arithmetic. Since SSE had separate registers, it needed

separate data transfer instructions.

 The Advanced Vector Extensions (AVX), added in 2010, doubles the

width of the registers again to 256 bits and thereby offers instructions that

double the number of operations on all narrower data types

AVX Instruction Description_______________________

VADDPD Add four packed double-precision operands

VSUBPD Subtract four packed double-precision operands

VMULPD Multiply four packed double-precision operands

VDIVPD Divide four packed double-precision operands

VFMADDPD Multiply and add four packed double-precision operands

VFMSUBPD Multiply and subtract four packed double-precision operands

VCMPxx Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE,

VMOVAPD Move aligned four packed double-precision operands

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register

 Fig: AVX instructions for x86 architecture useful in double-precision floating-point programs.

The Roofline Visual Performance Model :

 One visual, intuitive way to compare potential floating-point performance

of variations of SIMD architectures is the Roofline model [Williams et al.

20091. It ties together floating-point performance, memory performance,

and arithmetic intensity in a two-dimensional graph. Arithmetic intensity

is the ratio of floating-point operations per byte of memory accessed.

 It can be calculated by taking the total number of floating-point

operations for a program divided by the total number of data bytes

transferred to main memory during program execution.

 Peak floating-point performance can be found using the hardware

specifications. Many of the kernels in this case study do not fit in on-chip

caches, so peak memory performance is defined by the memory system

behind the caches.

Fig : Arithmetic intensity

 Fig below shows the Roofline model for the NEC SX-9 vector processor

on the left and the Intel Core i7 920 multicore computer on the right. The

vertical Y-axis is achievable floating-point performance from 2 to 256

GFLOP/sec. The horizontal X-axis is arithmetic intensity, varying from

1/8th FLOP/DRAM byte accessed to 16 FLOP/ DRAM byte accessed in

both graphs. Note that the graph is a log-log scale, and that Rooflines are

done just once for a computer.

 For a given kernel, we can find a point on the X-axis based on its

arithmetic intensity. If we drew a vertical line through that point, the

performance of the kernel on that computer must lie somewhere along

that line. We can plot a horizontal line showing peak floating-point

performance of the computer. Obviously, the actual floating-point

performance can be no higher than the horizontal line, since that is a

hardware limit.

 How could we plot the peak memory performance? Since the X-axis is

FLOP/ byte and the Y-axis is FLOP/sec, bytes/sec is just a diagonal line

at a 45-degree angle in this figure. Hence, we can plot a third line that

gives the maximum floating-point performance that the memory system

of that computer can support for a given arithmetic intensity. We can

express the limits as a formula to plot these lines in the graphs.

 Attainable GFLOPs/sec = Min(Peak Memory BW x Arithmetic Intensity, Peak Floating-Point Perf.)

 The horizontal and diagonal lines give this simple model its name and

indicate its value. The "Roofline" sets an upper bound on performance of

a kernel depending on its arithmetic intensity. If we think of arithmetic

intensity as a pole that hits the roof, either it hits the flat part of the roof,

which means performance is computationally limited, or it hits the slanted

part of the roof, which means performance is ultimately limited by

memory bandwidth.

 The vertical dashed line on the right (arithmetic intensity of 4) is an

example of the former and the vertical dashed line on the left (arithmetic

intensity of 1/4) is an example of the latter. Given a Roofline model of a

computer, you can apply it repeatedly, since it doesn't vary by kernel.

 The "ridge point," where the diagonal and horizontal roofs meet, offers an

interesting insight into the computer. If it is far to the right, then only

kernels with very high arithmetic intensity can achieve the maximum

performance of that computer. If it is far to the left, then almost any

kernel can potentially hit the maximum performance.

 The peak computational performance of the SX-9 is 2.4x faster than Core

i7, but the memory performance is l Ox faster. For programs with an

arithmetic intensity of 0.25, the SX-9 is l0x faster (40.5 versus 4.1

GFLOP/sec). The higher memory bandwidth moves the ridge point from

2.6 in the Core i7 to 0.6 on the SX-9, which means many more programs

can reach peak computational performance on the vector processor

Fig: Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore

computer with SIMD Extensions on the right.

