
NVIDIA GPU Memory Structures :

 Each SIMD Lane in a multithreaded SIMD Processor is given a private

section of off-chip DRAM, which we call the Private Memory. It is used

for the stack frame, for spilling registers, and for private variables that

don't fit in the registers. SIMD Lanes do not share Private Memories.

Recent GPUs cache this Private Memory in the L1 and L2 caches to aid

register spilling and to speed up function calls.

 We call the on-chip memory that is local to each multithreaded SIMD

Processor Local Memory. It is shared by the SIMD Lanes within a

multithreaded SIMD Processor, but this memory is not shared between

multithreaded SIMD Processors.

 The multithreaded SIMD Processor dynamically allocates portions of the

Local Memory to a thread block when it creates the thread block, and

frees the memory when all the threads of the thread block exit. That

portion of Local Memory is private to that thread block.

 Finally, we call the off-chip DRAM shared by the whole GPU and all

thread blocks GPU Memory. Our vector multiply example only used

GPU Memory.

Fig: GPU Memory Structure

 The. system processor, called the host, can read or write GPU Memory.

Local Memory is unavailable to the host, as it is private to each

multithreaded SIMD processor. Private Memories are unavailable to the

host as well.

 Rather than rely on large caches to contain the whole working sets of an

application, GPUs traditionally use. smaller streaming caches and rely on

extensive multithreading of threads of SIMD instructions to hide the long

latency to DRAM since their working sets can be hundreds of megabytes.

 Given the use of multithreading to hide DRAM latency, the chip area

used for caches in system processors is spent instead on computing

resources and on the large number of registers to hold the state of many

threads of SIMD instructions.

 The recent Fermi architecture has added caches, but they are thought of as

either bandwidth filters to reduce demands on GPU Memory or as

accelerators for the few variables whose latency cannot be hidden by

multithreading.

