
NVIDA GPU Instruction Set Architecture

 The instruction set target of the NVIDIA compilers is an abstraction of

the hardware instruction set. PTX (Parallel Thread Execution) provides a

stable instruction set for compilers as well as compatibility across

generations of GPUs. The hardware instruction set is hidden from the

programmer. PTX instructions describe the operations on a single CUDA

thread, and usually map one-to-one with hardware instructions, but one

PTX can expand to many machine instructions, and vice versa.

 PTX uses virtual registers, so the compiler figures out how many physical

vector registers a SIMD thread needs, and then an optimizer divides the

available register storage between the SIMD threads. This optimizer also

eliminates dead code, folds instructions together, and calculates places

where branches might diverge and places where diverged paths could

converge.

 The format of a PTX instruction is

 opcode.type d, a, b, c;

where d is the destination operand; a, b, and c are source operands;

the operation type is one of the following:

Type .type Specifier______

Untyped bits 8, 16, 32, and 64 bits . b8, b16, . b32, b64

Unsigned integer 8, 16, 32, and 64 bits U8, . U16,U32, u64

Signed integer 8, 16, 32, and 64 bits . S8, . S16, . S32, S64

Floating Point 16, 32, and 64 bits .J16, J32, J64

 Source operands are 32-bit or 64-bit registers or a constant value.

Destinations are registers, except for store instructions.

Fig: PTX GPU Thread Instruction set.

Conditional Branching in GPUs

 At the PTX assembler level, control flow of one CUDA thread is

described by the PTX instructions branch, call, return, and exit, plus

individual per-thread-lane predication of each instruction, specified by the

programmer with per-thread-lane 1-bit predicate registers. The PTX

assembler analyzes the PTX branch graph and optimizes it to the fastest

GPU hardware instruction sequence.

 At the GPU hardware instruction level, control flow includes branch,

jump, jump indexed, call, call indexed, return, exit, and special

instructions that manage the branch synchronization stack. GPU hardware

provides each SIMD thread with its own stack; a stack entry contains an

identifier token, a target instruction address, and a target thread-active

mask. There are GPU special instructions that push stack entries for a

SIMD thread and special instructions and instruction markers that pop a

stack entry. GPU hardware instructions also have individual per-lane

predication (enable/disable), specified with a 1-bit predicate register for

each lane.

 The PTX assembler typically optimizes a simple outer-level

IF/THEN/ELSE statement coded with PTX branch instructions to just

predicated GPU instructions, without any GPU branch instructions. The

PTX assembler identifies loop branches and generates GPU branch

instructions that branch to the top of the loop, along with special stack

instructions to handle individual lanes breaking out of the loop and

converging the SIMD Lanes when all lanes have completed the loop.

GPU indexed jump and indexed call instructions push entries on the stack

so that when all lanes complete the switch statement or function call the

SIMD thread converges.

 A GPU set predicate instruction (setp in the figure above) evaluates the

conditional part of the IF statement. The PTX branch instruction then

depends on that predicate. If the PTX assembler generates predicated

instructions with no GPU branch instructions, it uses a per-lane predicate

register to enable or disable each SIMD Lane for each instruction.

 The SIMD instructions in the threads inside the THEN part of the IF

statement broadcast operations to all the SIMD Lanes. Those lanes with

the predicate set to one perform the operation and store the result, and the

other SIMD Lanes don't perform an operation or store a result. For the

ELSE statement, the instructions use the complement of the predicate

(relative to the THEN statement), so the SIMD Lanes that were idle now

perform the operation and store the result while their formerly active

siblings don't. At the end of the ELSE statement, the instructions are

unpredicated so the original computation can proceed. Thus, for equal

length paths, an IF-THEN-ELSE operates at 50% efficiency.

 IF statements can be nested, hence the use of a stack, and the PTX

assembler typically generates a mix of predicated instructions and GPU

branch and special synchronization instructions for complex control flow.

the PTX assembler sets a "branch synchronization" marker on appropriate

conditional branch instructions that pushes the current active mask on a

stack inside each SIMD thread. A branch synchronization marker pops

the diverged branch entry and flips the mask bits before the ELSE

portion. At the end of the IF statement, the PTX assembler adds another

branch synchronization marker that pops the prior active mask off the

stack into the current active mask.

 If all the mask bits are set to one, then the branch instruction at the end of

the THEN skips over the instructions in the ELSE part. There is a similar

optimization for the THEN part in case all the mask bits are zero, as the

conditional branch jumps over the THEN instructions.

 The code for a conditional statement

if (X[i] !=0)

 X[i]= X[i]- Y[i];

else X[i]= Z[i];

 This IF statement could compile to the following PTX instructions

(assuming that R8 already has the scaled thread ID), with *Push, *Comp,

*Pop indicating the branch synchronization markers inserted by the PTX

assembler that push the old mask, complement the current mask, and pop

to restore the old mask:

 All instructions in the IF-THEN-ELSE statement are executed by a SIMD

Processor. It's just that only some of the SIMD Lanes are enabled for the

THEN instructions and some lanes for the ELSE instructions.

