
How Vector Processors Work: An Example

 We can best understand a vector processor by looking at a vector loop for

VMIPS. Let's take a typical vector problem, which we use throughout this

section: Y = a* X+ Y

 Where X and Y are vectors, initially resident in memory, and a is a scalar.

This problem is the so-called SAXPY or DAXPY loop that forms the

inner loop of the Linpack benchmark. (SAXPY stands for single-

precision a * X plus Y; DAXPY for double precision a * X plus Y.)

Linpack is a collection of linear algebra routines, and the Linpack

benchmark consists of routines for performing Gaussian elimination. For

now, let us assume that the number of elements, or length, of a vector

register (64) matches the length of the vector operation we are interested

in.

Example : Show the code for MIPS and VMIPS for the DAXPY loop. Assume
that the starting addresses of X and Y are in Rx and Ry, respectively.

Answer: Here is the MIPS code.'

 L.D FO,a ;load scalar a
 DADDIU R4,Rx,#512 ;last address to load
 Loop:L.D F2,0(Rx) ;load X[i]
 MUL.D F2,F2,FO ;a x X[i]
 L.D F4,0(Ry) ;load Y[i]
 ADD.D F4,F4,F2 ;a x X[i] + Y[i]
 S.D F4,9(Ry) ;store into Y[i]
 DADDIU Rx,Rx,#8 ;increment index to X
 DADDIU Ry,Ry,#8 ;increment index to Y
 DSUBU R20,R4,Rx ;compute bound
 BNEZ R20,Loop ;check if done

Here is the VMIPS code for DAXPY.

 L.D FO,a ;load scalar a
 LV V1,Rx ;load vector X
 MULVS.D V2,V1,F0 ;vector-scalar multiply
 LV V3,Ry ;load vector Y
 ADDVV.D V4,V2,V3 ;add
 SV V4,Ry ;store the result

 The most dramatic difference is that the vector processor greatly reduces

the dynamic instruction bandwidth, executing only 6 instructions versus

almost 600 for MIPS. This reduction occurs because the vector operations

work on 64 elements and the overhead instructions that constitute nearly

half the loop on MIPS are not present in the VMIPS code. When the

compiler produces vector instructions for such a sequence and the

resulting code spends much of its time running in vector mode, the code

is said to be vectorized or vectorizable. Loops can be vectorized when

they do not have dependences between iterations of a loop, which are

called loop-carried dependences.

 Another important difference between MIPS and VMIPS is the frequency

of pipeline interlocks. In the straightforward MIPS code, every ADD. D

must wait for a MUL. D, and every S. D must wait for the ADD. D. On

the vector processor, each vector instruction will only stall for the first

element in each vector, and then subsequent elements will flow smoothly

down the pipeline. Thus, pipeline stalls are required only once per vector

instruction, rather than once per vector element. Vector architects call

forwarding of element-dependent operations chaining, in that the

dependent operations are "chained" together.

