
 Graphics Processing Units:

 For a few hundred dollars, anyone can buy a GPU with hundreds of

parallel floating-point units, which makes high-performance computing

more accessible. The interest in GPU computing blossomed when this

potential was combined with a programming language that made GPUs

easier to program. Hence, many programmers of scientific and

multimedia applications today are pondering whether to use GPUs or

CPUs.

 The primary ancestors of GPUs are graphics accelerators, as doing

graphics well is the reason why GPUs exist. While GPUs are moving

toward mainstream computing, they can't abandon their responsibility to

continue to excel at graphics.

 A graphics processing unit (GPU), is similar CPU Designed specifically

for performing the complex mathematical and geometric calculations that

are necessary for graphics rendering.

 A graphics processing unit (GPU) is a computer chip that performs rapid

mathematical calculations, primarily for the purpose of rendering images.

 They can also occasionally be called visual processing unit (VPU)

 GPU is able to render images more quickly than a CPU because of its

parallel processing architecture

 Nvidia introduced the first GPU, the GeForce 256, in 1999. In 2012,

Nvidia released a virtualized GPU, which offloads graphics processing

from the server CPU in a virtual desktop infrastructure. Others include

AMD, Intel and ARM.

 GPUs are used in :

o Embedded Systems

o Mobile phones

o Personal computers

o Workstations

o Game consoles

 A GPU is tailored for highly parallel operation while a CPU executes

programs serially. For this reason, GPUs have many parallel execution

units and higher transistor counts, while CPUs have few execution units

and higher clock speeds.A GPU is for the most part deterministic in its

operation.

 GPUs have much deeper pipelines (several thousand stages vs 10-20 for

CPUs).GPUs have significantly faster and more advanced memory

interfaces as they need to shift around a lot more data than CPUs

 Very Efficient For

o Fast Parallel Floating Point Processing

o Single Instruction Multiple Data Operations

o High Computation per Memory Access

 Not Efficient For

o Double Precision

o Logical Operations on Integer Data

o Branching-Intensive Operations

o Random Access, Memory-Intensive Operations

 The mapping of a Grid (vectorizable loop), Thread Blocks (SIMD basic

blocks), and threads of SIMD instructions to a vector-vector multiply,

with each vector being 8192 elements long. Each thread of SIMD

instructions calculates 32 elements per instruction, and in this example

each Thread Block contains 16 threads of SIMD instructions and the Grid

contains 16 Thread Blocks. The hardware Thread Block Scheduler

assigns Thread Blocks to multithreaded SIMD Processors and the

hardware Thread Scheduler picks which thread of SIMD instructions to

run each clock cycle within a SIMD Processor. Only SIMD Threads in

the same Thread Block can communicate via Local Memory. (The

maximum number of SIMD Threads that can execute simultaneously per

Thread Block is 16 for Teslageneration GPUs and 32 for the later Fermi-

generation GPUs.)

 A Thread Block is assigned to a processor that executes that code, which

we call a multithreaded SIMD Processor, by the Thread Block Scheduler.

The Thread Block Scheduler has some similarities to a control processor

in a vector architecture. It determines the number of thread blocks needed

for the loop and keeps allocating them to different multithreaded SIMD

Processors until the loop is completed. In this example, it would send 16

Thread Blocks to multithreaded SIMD Processors to compute all 8192

elements of this loop.

Fig: Block Diagram of Multithreaded SIMD Processor.

 Fig above shows a simplified block diagram of a multithreaded S1MD

Processor. It is similar to a Vector Processor, but it has many parallel

functional units instead of a few that are deeply pipelined, as does a

Vector Processor. each multithreaded SIMD Processor is assigned 512

elements of the vectors to work on. SIMD Processors are full processors

with separate PCs and are programmed using threads.

 The GPU hardware then contains a collection of multithreaded SIMD

Processors that execute a Grid of Thread Blocks (bodies of vectorized

loop); that is, a GPU is a multiprocessor composed of multithreaded

SIMD Processors. Thread Block Scheduler assigns Thread Blocks (bodies

of a vectorized loop) to multithreaded SIMD Processors. . It is a

traditional thread that contains exclusively SIMD instructions. These

threads of SIMD instructions have their own PCs and they run on a

multithreaded SIMD Processor.

 The SIMD Thread Scheduler includes a scoreboard that lets it know

which threads of SIMD instructions are ready to run, and then it sends

them off to a dispatch unit to be run on the multithreaded SIMD

Processor. It is identical to a hardware thread scheduler in a traditional

multithreaded processor just that it is scheduling threads of SIMD

instructions.

 GPU hardware has two levels of hardware schedulers:

1) the Thread Block Scheduler that assigns Thread Blocks (bodies of

vectorized loops) to multithreaded SIMD Processors, which ensures that

thread blocks are assigned to the processors whose local memories have

the corresponding data.

 (2) the SIMD Thread Scheduler within a SIMD Processor, which

schedules when threads of SIMD instructions should run.

 The SIMD instructions of these threads are 32 wide, so each thread of

SIMD instructions in this example would compute 32 of the elements of

the computation. In this example, Thread Blocks would contain 512/32 =

16 SIMD threads. Since the thread consists of SIMD instructions, the

SIMD Processor must have parallel functional units to perform the

operation. We call them SIMD Lanes.

 The number of lanes per SIMD processor varies across GPU generations.

With Fermi, each 32-wide thread of SIMD instructions is mapped to 16

physical SIMD Lanes, so each SIMD instruction in a thread of SIMD

instructions takes two clock cycles to complete. Each thread of SIMD

instructions is executed in lock step and only scheduled at the beginning.

 The threads of SIMD instructions are independent, the SIMD Thread

Scheduler can pick whatever thread of SIMD instructions is ready, and

need not stick with the next SIMD instruction in the sequence within a

thread.

 SIMD Thread Scheduler picking threads of SIMD instructions in a

different order over time. The assumption of GPU architects is that GPU

applications have so many threads of SIMD instructions that

multithreading can both hide the latency to DRAM and increase

utilization of multithreaded SIMD Processors.

 Fig: Schduling of Threads of SIMD Instructions

 The scheduler selects a ready thread of SIMD instructions and issues an

instruction synchronously to all the SIMD Lanes executing the SIMD

thread. Because threads of SIMD instructions are independent, the

scheduler may select a different SIMD thread each time.

 Thread as having up to 64 vector registers, with each vector register

having 32elements and each element being 32 bits wide. Since Fermi has

16 physical SIMD Lanes, each contains 2048 registers) Each CUDA

Thread gets one element of each of the vector registers. To handle the

32elements of each thread of SIMD instructions with 16 SIMD Lanes, the

CUDA. Threads of a Thread block collectively can use up to half of the

2048 registers.

