
Differences between Vector Architectures & GPUs

 Since both architectures are designed to execute data-level parallel

programs, but take different paths, this comparison is in depth to try to

gain better understanding of what is needed for DLP hardware. Fig below

shows the vector term first and then the closest equivalent in a GPU.

 A SIMD Processor is like a vector processor. The multiple SIMD

Processors in GPUs act as independent MIMD cores, just as many vector

computers have multiple vector processors. This view would consider the

NVIDIA GTX 480 as a 15-core machine with hardware support for

multithreading, where each core has 16 lanes. The biggest difference is

multithreading, which is fundamental to GPUs and missing from most

vector processors.

 Looking at the registers in the two architectures, the VMIPS register file

holds entire vectors-that is, a contiguous block of 64 doubles. In contrast,

a single vector in a GPU would be distributed across the registers of all

SIMD Lanes. A VMIPS processor has 8 vector registers with 64

elements, or 512 elements total. A GPU thread of SIMD instructions has

up to 64 registers with 32 elements each, or 2048 elements. These extra

GPU registers support multithreading.

 we assume the vector processor has four lanes and the multithreaded

SIMD Processor also has four SIMD Lanes. This figure shows that the

four SIMD Lanes act in concert much like a four-lane vector unit, and

that a SIMD Processor acts much like a vector processor.

 In reality, there are many more lanes in GPUs, so GPU "chimes" are

shorter. While a vector processor might have 2 to 8 lanes and a vector

length of, say, 32-making a chime 4 to 16 clock cycles-a multithreaded

SIMD Processor might have 8 or 16 lanes. A SIMD thread is 32 elements

wide, so a GPU chime would just be 2 or 4 clock cycles.

 The closest GPU term to a vectorized loop is Grid, and a PTX instruction

is the closest to a vector instruction since a SIMD Thread broadcasts a

PTX instruction to all SIMD Lanes.



 With respect to memory access instructions in the two architectures, all

GPU loads are gather instructions and all GPU stores are scatter

instructions. The explicit unit-stride load and store instructions of vector

architectures versus the implicit unit stride of GPU programming is why

writing efficient GPU code requires that programmers think in terms of

SIMD operations, even though the CUDA programming model looks like

MIMD.

 The two architectures take very different approaches to hiding memory

latency. Vector architectures amortize it across all the elements of the

vector by having a deeply pipelined access so you pay the latency only

once per vector load or store. Hence, vector loads and stores are like a

block transfer between memory and the vector registers. In contrast,

GPUs hide memory latency using multithreading

 With respect to conditional branch instructions, both architectures

implement them using mask registers. Both conditional branch paths

occupy time and/or space even when they do not store a result. The

difference is that the vector compiler manages mask registers explicitly in

software while the GPU hardware and assembler manages them implicitly

using branch synchronization markers.

 The conditional branch mechanism of GPUs gracefully handles the strip-

mining problem of vector architectures . When the vector length is

unknown at compile time, the program must calculate the modulo of the

application vector length and the maximum vector length and store it in

the vector length register. The strip-minded loop then resets the vector

length register to the maximum vector length for the rest of the loop. This

case is simpler with GPUs since they just iterate the loop until all the

SIMD Lanes reach the loop bound.

 The control processor of a vector computer plays an important role in the

execution of vector instructions. It broadcasts operations to all the vector

lanes and broadcasts a scalar register value for vector-scalar operations.

The control processor is missing in the GPU. The closest analogy is the

Thread Block Scheduler, which assigns Thread Blocks (bodies of vector

loop) to multithreaded SIMD Processors.

 The scalar processor in a vector computer executes the scalar instructions

of a vector program; that is, it performs operations that would be too slow

to do in the vector unit.. vector unit" in a GPU must do computations that

you would expect to do on a scalar processor in a vector computer

Fig: vector processor with four lanes on the left & multithreaded SIMD Processor of a GPU with four SIMD Lanes

on the right.

