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SIMD 
• SIMD Arch have significant DLP 

• Single Instruction can launch many data opns 

• SIMD is more energy efficient than MIMD 

– MIMD needs to fetch and execute one instruction 
per data opns. 

• SIMD is more attractive for PMDs. 

• Advantage of SIMD over MIMD 
• Programmer thinks sequential execution yet achieves 

parallel speedup by having parallel data operations 

 

 

 



SIMD 

• SIMD has 3 variations: 

– Vector Architectures 

• Allows pipelined execution of many data operations 

– SIMD MMX 

• Allows simultaneous parallel data operations that 
support  Multimedia applications. 

– GPU Architectures 

• They offer higher performance than traditional 
multicore 

• They have system processor, system memory & 
graphics memory. 



Vector Processor 
• Efficient way to execute a vectorizable 

application is by Vector processor- Jim Smith  

• vector processor is a CPU that executes 
instructions that operate on arrays of data. 

– It collects set of data elements put them in the 
register file  

– operates on the data in those register files and 
stores the results back in memory. 

– These reg files acts like buffers and hide the memory 
latency. 

 

 

 



 
Vector processor 

   • SIMD classification 

• Also be called as array processor 

• Improves performance on numerical simulations 

• Used in Video game console and Graphic 
accelerators 

• Ex: VIS, MMX, SSE, AltiVec and  AVX 

 



VMIPS 



VMIPS 
• It is loosely based on cray-1 

• VMIPS instruction set 

– Scalar portion is similar to MIPS 

– Vector portion is logical vector extension of MIPS 

• Registers: 

– It has 8 vector registers 

– Fixed length holding 

– Each vector register holds single vector 

– Each vector register holds 64 elements of 64 bits 

 

 

 

 



VMIPS 

• Vector registers 

– Vector register file has 16 read and 8 write ports 

– Supply operands to VFUs. 

– Registers and the FUs are connected by a pair of 
cross bar switches (thick gray lines) 

• Scalar registers 

– 32 GPRs and 32 FPRs as in MIPS. 

– These supply operands to VFUs 

– Supply addresses to L/S units. 

 



VMIPS 

• Vector functional units 

– Each unit is fully pipelined  

–  start a new operation on every clock cycle 

– Control Unit is needed to detect hazards 

• structural hazards for functional units  

• data hazards on register accesses 



VMIPS 

• VMIPS has five functional units 

– Integer unit 

– Logical Unit 

– Floating point Add/Sub 

– Floating point Multiply 

– Floating point Divide 



VMIPS 

• VMIPS has scalar architecture like MIPS. 

• Vector load/store unit- 

–  vector L/S unit loads/stores a vector to/from memory.  

– This unit is fully pipelined 

– words can be moved b/w the vector reg and memory one 
word per clock cycle 

– This unit also handles  scalar loads and stores. 



How Vector Processors Work: An Example  

• Let's take a typical vector problem Y = a* X+ Y 

• X and Y are vectors resident in memory 

• a is a scalar 

• This problem is the so-called SAXPY or DAXPY  

– SAXPY –single precision   a * X plus Y 

– DAXPY -double precision a * X plus Y 

 



How Vector Processors Work: An Example  

• MIPS code for the DAXPY loop 
•             L.D             FO,a  ;load scalar a 

•             DADDIU    R4,Rx,#512 ;last address to load 

• Loop:  L.D             F2,0(Rx) ;load X[i] 

•            MUL.D       F2,F2,FO ;a x X[i] 

•             L.D            F4,0(Ry) ;load Y[i] 

•             ADD.D      F4,F4,F2 ;a x X[i] + Y[i] 

•             S.D            F4,9(Ry) ;store into Y[i] 

•             DADDIU   Rx,Rx,#8 ;increment index to X 

•             DADDIU   Ry,Ry,#8 ;increment index to Y 

•             DSUBU     R20,R4,Rx ;compute bound 

•             BNEZ         R20,Loop ;check if done 

 

 



How Vector Processors Work: An Example  

• VMIPS code for DAXPY 
•  L.D              FO,a ;load scalar a 

•  LV               V1,Rx ;load vector X 

•   MULVS.D  V2,V1,F0 ;vector-scalar multiply 

•   LV               V3,Ry ;load vector Y 

•   ADDVV.D   V4,V2,V3 ;add 

•    SV              V4,Ry ;store the result 

 



How Vector Processors Work: An Example  

• vector processor reduces the  instruction bandwidth 

• executes only 6 instructions vs almost 600 for MIPS 
• It occurs because the vector operations work on 64 elements  

•  overhead instructions that constitute half the loop 
on MIPS are not present in the VMIPS code 

• compiler produces vector instructions for such a 
sequence 

• resulting code spends its time running in vector 
mode , the code is said to be vectorized or 
vectorizable. 

 

 

 



How Vector Processors Work: An Example  

 
• Loops can be vectorized when they do not have 

dependences between iterations of a loop, are called 
loop-carried dependences. 

• Another important difference between MIPS and VMIPS is the 
frequency of pipeline interlocks. 

• In the MIPS code, every ADD. D must wait for a MUL. D, and 
every S. D must wait for the ADD. D.  

• On the vector processor, each vector instruction will only stall 
for the first element in each vector, and then subsequent 
elements will flow smoothly down the pipeline.  



How Vector Processors Work: An Example 

• Vector architects call forwarding of element dependent 
operations chaining, in that the dependent operations 
are "chained" together. 

• Thus, pipeline stalls are required only once per vector 
instruction, rather than once per vector element. 



Vector Execution Time  

• Vector Execution time depends on 3 factors: 

– length of the operand vectors 

– structural hazards among the operations 

–  data dependences 

• Given the vector length and the initiation rate, the rate 
at which a vector unit consumes new operands and 
produces new results, we can compute the time for a 
single vector instruction.  

• All modern vector computers have vector functional 
units with multiple parallel pipelines (or lanes) that can 
produce two or more results per clock cycle 



Vector Execution Time  

• convoy : 

– is the set of vector instructions that could execute together. 

–  The instructions in a convoy must not contain any structural 
hazards 

–  if such hazards were present, the instructions would need to 
be serialized and initiated in different convoys.  

– we assume that a convoy of instructions must complete 
execution before any other instructions can begin execution.  

– vector instruction sequences with structural hazards 
sequences should be in separate convoys 

 



Vector Execution Time  

• chaining : 

– allows a vector operation to start as soon as the 
individual elements of its vector source operand 
become available 

– The results from the first functional unit in the chain 
are "forwarded" to the second functional unit. 

– allows them to be in the same convoy 

 



Vector Execution Time  

•  chime 

– a timing metric to estimate the time for a convoy 

– simply the unit of time taken to execute one convoy 

– vector sequence that consists of m convoys executes in m 
chimes for a vector length of n 

– for VMIPS this is approximately in m x n clock cycles. 

– measuring time in chimes is a better approximation for long 
vectors. 

– If we know the number of convoys in a vector sequence, we 
know the execution time in chimes 

 
 



Vector Execution Time  

• Show how the following code sequence lays out in convoys, 
assuming a single copy of each vector functional unit:  

– LV     V1,Rx ;load vector X 

– MLILVS.D  V2,V1,F0 ;vector-scalar multiply 

– LV     V3,Ry ;load vector Y 

– ADDVV.D   V4,V2,V3 ;add two vectors 

– SV      V4,Ry ;store the sum 

•  How many chimes will this vector sequence take? How many 

cycles per FLOP (floating-point operation) are needed, ignoring 
vector instruction issue overhead?  

 



Vector Execution Time  

– The first convoy starts with the first LV instruction. 
The MULVS. D is dependent on the first LV, but 
chaining allows it to be in the same convoy.  

– The second LV instruction must be in a separate 
convoy since there is a structural hazard on the 
load/store unit for the prior LV instruction 

– The ADDVV. D is dependent on the second LV, but it 
can again be in the same convoy via chaining 

– Finally, the SV has a structural hazard on the LV in the 
second convoy, so it must go in the third convoy 

 



Vector Execution Time  

• The sequence requires three convoys  
–  LV    MULVS.D 

–  LV   ADDVV.D 

–  SV 
– Since the sequence takes three chimes and there are two floating-point 

operations per result 

– number of cycles per FLOP is 1.5 (ignoring vector instruction issue 
overhead). 

–  we allow the LV  and  MULVS.D both to execute in the first convoy, 

–   the chime approximation is reasonably accurate for long vectors 

– for 64-element vectors, the time in chimes is 3, so the sequence would take 
about 64 x 3 or 192 clock cycles. 

 

 

 



Multiple Lanes 
 

multiple FUs to improve the performance of a single vector add instruction, C = A + B 



Multiple Lanes 

• The vector processor 
– (a) single add pipeline and can complete one addition per cycle. 

– (b) four add pipelines and can complete four additions per cycle.  

– The elements within a single vector add instruction are  
interleaved across the four pipelines.  

– The set of elements that move through the pipelines together is 
termed an element group 

– Going to four lanes from one. lane reduces the number of clocks 
for a chime from 64 to 16.  

– For multiple lanes to be advantageous, both the applications and 
the architecture must support long vectors 



Multiple Lanes 

 

Fig: Structure of a vector unit containing four lanes 



Multiple Lanes 

– Each lane contains one portion of the vector reg file 
and one execution pipeline from each vector FU. 

– Each vector FU executes vector instructions at the 
rate of one element group per cycle using multiple 
pipelines, one per lane. 

– The first lane holds the first element (element 0) for 
all vector registers, and so the first element in any 
vector instruction will have its source and 
destination operands located in the first lane.   

 



Multiple Lanes 
• Vector register storage is divided across the lanes, 

with each lane holding every fourth element of 
each vector register 

• three vector functional units:  

– an FP add 

– an FP multiply 

– a load-store unit. 

• Adding multiple lanes is a popular technique to 
improve vector performance. 

 

 



 
 
 

Vector-Length Registers 

  
 

• A vector registers processor has a natural vector 
length determined by the number of elements 
in each vector register.  

• This length, which is 64 for VMIPS 

• In a real program the length of a particular 
vector operation is often unknown at compile 
time 



Vector Length Register 

• single piece of code may require different vector 
lengths 

For (i=0; i<n;   i=i+1) 

Y[i]= a*X[i]+ Y[i]; 

• size of all the vector operations depends on n 

• value of n might subject to change during 
execution 

 



vector-length register 

• vector-length register (VLR) 

– controls the length of any vector operation 

– value in the VLR cannot be greater than the length of 
the vector registers 

– This solves our problem as long as the real length is 
less than or equal to the maximum vector length 
(MVL) 



vector-length register 

• if the value of n is greater than the MVL 

• strip mining is the generation of code such that 
each vector operation is done for a size less than 
or equal to the MVL. 

• We create one loop that handles any number of 
iterations that is a multiple of the MVL  

• another loop that handles any remaining 
iterations and must be less than the MVL. 

 



Vector Mask Registers 

• The presence of conditionals (IF statements) 
inside loops and the use of sparse matrices 
are two main reasons for lower levels of 
vectorization.  

• Consider the following loop written in C:  

        For(I =0; i< 64;   i=i+1) 

      if(X[i]!=0) 

              X[i]= X[i]- Y[i]; 

 



Vector Mask Registers 

• This loop cannot normally be vectorized 
because of the conditional execution of the 
body 

• Mask registers essentially provide conditional 
execution of each element operation.  

• The vector-mask control uses a Boolean vector 
to control the execution of a vector instruction 



Vector Mask Registers 

• When the vector mask register is enabled, any 
vector instructions executed operate only on 
the vector elements whose corresponding 
entries in the vector-mask register are one. 

• The entries in the destination vector register 
that correspond to a zero in the mask register 
are unaffected by the vector operation 



Vector Mask Registers 

     LV        V1,Rx   ;load vector X into V1 

     LV       V2,Ry    ;load vector Y 

    L.D        FO,#O   ;load FP zero into FO 

    SNEVS.D          V1,FO     ;sets VM(i) to1if V1(i)!=F0 

     SLIBVV.D         V1,V1,V2;subtract under vector mask 

    SV                     V1,Rx     ;store the result in X 

  

 



Memory Banks 

• penalties for start-ups on load/store units are 
higher than those for arithmetic units 

• over 100 clock cycles on many processors.  

• For VMIPS a start-up time of 12 clock cycles. 

•  To maintain an initiation rate of one word 
fetched or stored per clock 

– memory system must be capable of producing or 
accepting this much data.  

– accesses across multiple independent memory 
banks usually delivers the desired rate 



Memory Banks 

• Most vector processors use memory banks, 
which allow multiple independent accesses 
rather than simple memory interleaving for 
three reasons:  

– To support simultaneous accesses from multiple 
loads or stores, the memory system needs 
multiple banks and to be able to control the 
addresses to the banks independently 



Memory Banks 

– Most vector processors support the ability to load or store 
data words that are not sequential. In such cases, 
independent bank addressing, rather than interleaving, is 
required.  

– Most vector computers support multiple processors 
sharing the same memory system, so each processor will 
be generating its own independent stream of addresses

  

 



SIMD Instruction Set Extensions for Multimedia 

 • media applications operate on narrower data types. 

• Many graphics systems used 8 bits to represent each of 

the three primary colors plus 8 bits for transparency. 

• Depending on the application, audio samples are usually 
represented with 8 or 16 bits. 

• Like vector instructions, a SIMD instruction specifies the 
same operation on vectors of data. 

• SIMD instructions tend to specify fewer operands and 
hence use much smaller register files this is in contrast 
to vector arch which has large reg files 



SIMD Instruction Set Extensions for Multimedia 

• multimedia support for 256-bit-wide operations 

 

• Instruction category           Operands______________________ 
• Unsigned add/subtract   Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

• Maximum/minimum    Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

•  Average      Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

• Shift right/left    Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

• Floating point      Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit 

 



SIMD Instruction Set Extensions for Multimedia 

• Multimedia SIMD extensions fix the number of data 
operands in the opcode 

• Multimedia SIMD does not offer the more sophisticated 
addressing modes of  vector architectures 

• Multimedia SIMD usually does not offer the mask 
registers to support conditional execution  

• The Streaming SIMD Extensions (SSE) successor in 1999 
added separate registers that were 128 bits wide 

•  so now instructions could simultaneously perform 
sixteen 8-bit operations, eight 16-bit operations, or four 
32-bit operations 



SIMD Instruction Set Extensions for Multimedia 

• Advanced Vector Extensions (AVX), added in 
2010, doubles the width of the registers again 
to 256 bits and thereby offers instructions that 
double the number of operations on all 
narrower data types 



SIMD Instruction Set Extensions for Multimedia 

• AVX Instruction     Description 
• VADDPD  Add four packed double-precision operands 

• VSUBPD  Subtract four packed double-precision operands 

• VMULPD  Multiply four packed double-precision operands 

• VDIVPD  Divide four packed double-precision operands 

• VFMADDPD  Multiply and add four packed double-precision 
   operands 

• VFMSUBPD  Multiply and subtract four packed double-
precision   operands 

• VCMPxx  Compare four packed double-precision operands 
   for EQ, NEQ, LT, LE, GT, GE, 

• VMOVAPD  Move aligned four packed double-precision 
   operands 

• VBROADCASTSD  Broadcast one double-precision operand to four 
   locations in a 256-bit register 

 



Graphics Processing Unit 

• A graphics processing unit (GPU), is similar CPU 

• Designed specifically for performing the complex 
mathematical and geometric calculations that are 
necessary for graphics rendering. 

 



Graphics Processing Unit 

• A graphics processing unit (GPU) is a computer chip 
that performs rapid mathematical calculations, 

primarily for the purpose of rendering images. 

• occasionally called visual processing unit (VPU) 

• GPU is able to render images more quickly than a 
CPU because of its parallel processing architecture 

• Nvidia introduced the first GPU, the GeForce 256, in 1999  

• Others include AMD, Intel and ARM. 

• In 2012, Nvidia released a virtualized GPU, which offloads 
graphics processing from the server CPU in a virtual desktop 
infrastructure. 

http://www.nvidia.com/page/geforce256.html
http://searchservervirtualization.techtarget.com/definition/virtual-desktop-infrastructure-VDI
http://searchservervirtualization.techtarget.com/definition/virtual-desktop-infrastructure-VDI


Graphics Processing Unit 

• GPUs are used in  

– Embedded Systems 

– Mobile phones 

– Personal computers 

– Workstations  

– Game consoles 



GPU Vs CPU 

• A GPU is tailored for highly parallel operation while a 
CPU executes programs serially 

• For this reason, GPUs have many parallel execution 
units and higher transistor counts, while CPUs have 
few execution units and higher clock speeds 

• A GPU is for the most part deterministic in its 
operation 

• GPUs have much deeper pipelines (several thousand 
stages vs 10-20 for CPUs) 

• GPUs have significantly faster and more advanced 
memory interfaces as they need to shift around a lot 
more data than CPUs 

 



• Entertainment Industry has driven the 
economy of these chips?  

– Males age 15-35 buy $10B in video games / year 

• Moore’s Law ++ 

• Simplified design (stream processing) 

• Single-chip designs 

What  are GPU’s Growth? 



GPU 

• Very Efficient For 
– Fast Parallel Floating Point Processing 

– Single Instruction Multiple Data Operations 

– High Computation per Memory Access 

 

• Not  Efficient For 
– Double Precision 

– Logical Operations on Integer Data 

– Branching-Intensive Operations 

– Random Access, Memory-Intensive Operations  

 



CUDA 

• CUDA  -Compute Unified Device Architecture 

– is a parallel computing platform and programming 
model created by NVIDIA 

– Implemented by the GPUs 

–  CUDA gives developers access to the instruction set 
and memory of the parallel computational elements 
in CUDA GPUs.  

– Using CUDA, GPUs become accessible for 
computation like CPUs. 



CUDA 

• functions for the GPU (device) and functions 
for the system processor (host), 

•  CUDA uses _device_or_global_ for GPU and - 
-host-for the CPU. 

• CUDA variables declared in the  device  or 
global   functions are allocated to the GPU 
Memory 



Definitions 

 

– dimGrid - dimensions of the code (in blocks)  

– dimBlock- dimensions of a block (in threads) 

– Blockldx- identifier for blocks  

– threadIdx- identifier for threads per block  

– blockDim- number of threads per block  

 



DAXPY  C code 

• /* Sequential code */  

• // DAXPY in C  

• void daxpy(int n, double a, double *x, double *y) 

• { 

• for(int i=0; i< n;++i) 

•  y[i]= a*x[i]+ y[i] 

• }  



DAXPY CUDA version 
•  // Invoke DAXPY with 256 threads per Thread Block _ 

• -host- 

•                  int  nblocks  =(n+255)/256; 

•                 daxpy<<<nblocks,256>>>(n,a, x, y); 

•                 // DAXPY in CUDA 

• _  device_ 

•                void daxpy(int n, double a, double*x, double*y) 

•               { 

•                  int i= blockIdx.x*blockDim.x+ threadIdx.x; 

•                  if(i< n) y[i]= a*x[i]+ y[i]; 

•               }  



DAXPY 

• We launch n threads, one per vector element 

• 256 CUDA Threads per thread block  

• The GPU function starts by calculating the 
element index i  

– based on the block ID, 

–  the number of threads per block,  

– and the thread ID. 

–  As long as this index is within the array (i< n), it 
performs the multiply and add. 

 



NVIDIA GPUs: Terminology  



NVIDIA GPUs: Terminology  
•  Program abstractions : 

• Grid  
– A vectorizable loop executed on  GPU made up of one or 

more thread blocks 

• Thread Block  
• A group of threads processing a portion of the loop on             

 MTSIMD processor .    

• They communicate via local memory 

• CUDA Thread  

 –Thread that processes one iteration of the loop  executed on 

one SIMD lane 



NVIDIA GPUs: Terminology  

• Machine Object  

• Warp  

– A thread of SIMD instruction executed on SIMD 
lane  

• PTX instruction  

– Single SIMD instruction executed on SIMD lanes 

 



NVIDIA GPUs: Terminology  

•  Memory hardware  

• Global Memory  

– DRAM available to all threads (SIMD processors in 
GPU) 

• Local Memory  

– Private to the thread  

• Shared Memory  

– Accessible to all threads of a Streaming Processor  

• Thread Processor Registers  

 



NVIDIA GPUs: Terminology  
• Processing hardware  

• Streaming Multiprocessor  

– Multithreaded SIMD processor executes threads of SIMD 
instructions 

• Giga Thread Engine  

– Thread block scheduler assigns multiple thread blocks to MT 
SIMD processor  

• Warp Scheduler  

– SIMD Thread Scheduler issues threads when they are ready 
to execute 

• Thread Processor  

– SIMD lane executes operations in a thread of SIMD 
instructions on a single element 

 



 
NVIDIA GPU –MTSIMD 



NVIDIA GPU- MTSIMD 
• GPU is a multiprocessor composed of MTSIMD 

processors. 

• It is similar to vector processor but with many 
parallel FU’s that are deeply pipelined. 

• MTSIMD is a processor that executes code in the 
form of thread blocks. 

• GPU H/W contains a collection of MTSIMD 
Processors execute a Grid of Thread Blocks. 

 

 



NVIDIA GPU- MTSIMD 

• GPU H/W has two levels of H/W schedulers 

1. Thread Block Scheduler:  

– Thread block scheduler is similar to control unit in 
Vector processor 

– det the no of thread blocks for a loop and 
allocates them to diff MTSIMD processors. 

– ensures that thread blocks are assigned to the 
processors whose local memories have the 
corresponding data. 

 



NVIDIA GPU- FERMI MTSIMD 

2. SIMD Thread Scheduler:  
• SIMD Thread scheduler has scoreboard logic  

• It keeps track of 48 threads of SIMD instructions 

• It tells that which thread of SIMD instructions are ready to 
run 

• It sends those instructions to dispatch unit to be run on 
MTSIMD processor 

• within a SIMD Processor, which schedules when threads of 
SIMD instructions should run 

 



NVIDIA GPU- MTSIMD 

• It has many parallel functional units 

• SIMD Processors with separate PCs and are 
programmed using threads. 

• Each MTSIMD Processor is assigned 512 
elements of the vectors to work on 

• SIMD processors have 32,768 registers 

• Like vector processor these registers are 
logically divided across SIMD lanes. 

 

 



NVIDIA GPU- MTSIMD 

• Each SIMD Thread has 64 vector registers of 
32 elements with 32 bit each. 

• FERMI has 16 physical lanes each contain 2048 
registers 

• Thread Blocks would contain 512/32 = 16 
SIMD threads. 

• Each thread of SIMD instructions in this 
example compute 32 of the elements of the 
computation. 

 

 

 



NVIDIA GPU- MTSIMD 
• GPU applications have so many threads of SIMD 

instructions that multithreading can  

–  hide the latency to DRAM  

–  increase utilization of multithreaded SIMD 
Processors 

 

 



 
NVIDA GPU ISA 

• PTX  (Parallel Thread Execution) provides a stable 
instruction set for GPUs 

• H/W instruction set is hidden from the 
programmer 

• PTX instructions describe the operations on a 
single CUDA thread 

• PTX uses virtual registers 

• Translation to machine code is performed in 
software  

 



NVIDA GPU ISA 

• Format of a PTX instruction is  

   opcode.type d, a, b, c;  

– where d is the destination operand; a, b, and c are 
source operands  

• Source operands are 32-bit or 64-bit registers 
or a constant value. Destinations are registers, 
except for store instructions. 

 



NVIDA GPU ISA 

• the operation type is one of the following:  
 

Type      .type Specifier______ 

• Untyped bits 8, 16, 32, and 64 bits . b8, b16, . b32, b64 

• Unsigned integer 8, 16, 32, and 64 bits  .U8, . U16, U32, u64 

• Signed integer 8, 16, 32, and 64 bits . S8, . S16, . S32, S64 

• Floating Point 16, 32, and 64 bits .J16,  J32,  J64 

 

 



Conditional Branching  
 • Like vector architectures, GPU branch hardware uses internal 

masks  

• Also uses  
– Branch synchronization stack  

– Entries consist of masks for each SIMD lane  

– I.e. which threads commit their results (all threads execute)  

• Instruction markers to manage when a branch diverges into 
multiple execution paths  
– Push on divergent branch  

• and when paths converge  
– Act as barriers  

– Pops stack  

• Per-thread-lane 1-bit predicate register, specified by 
programmer  

 



NVIDIA GPU Memory Structures  

 



GPU Architecture 

 



GPU Architecture 



FERMI GPU 





FERMI vs KEPLER 
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FERMI vs KEPLER 


