
SIMD Instruction Set Extensions for Multimedia 

 

 SIMD Multimedia Extensions started with the simple observation that 

many media applications operate on narrower data types than the 32-bit 

processors were optimized for. Many graphics systems used 8 bits to 

represent each of the three primary colors plus 8 bits for transparency. 

Depending on the application, audio samples are usually represented with 

8 or 16 bits. 

 By partitioning the carry chains within, say, a 256-bit adder, a processor 

could perform simultaneous operations on short vectors of thirty-two 8-

bit operands, sixteen 16-bit operands, eight 32-bit operands, or four 64-bit 

operands.  

 Like vector instructions, a SIMD instruction specifies the same operation 

on vectors of data. Unlike vector machines with large register files such 

as the VMIPS vector register, which can hold as many as sixty-four 64-bit 

elements in each of 8 vector registers, SIMD instructions tend to specify 

fewer operands and hence use much smaller register files.  
 

 In contrast to vector architectures, which offer an elegant  instruction set 

that is intended to be the target of a vectorizing compiler, SIMD 

extensions have three major omissions:  

 

                                      Instruction category  Operands______________________ 

                                      Unsigned add/subtract Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

                                      Maximum/minimum Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

                                      Average  Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

                                      Shift right/left Thirty-two 8-bit, sixteen 16-bit, eight 32-bit, or four 64-bit 

                                      Floating point Sixteen 16-bit, eight 32-bit, four 64-bit, or two 128-bit 
            

               Fig  Summary of typical SIMD multimedia support for 256-bit-wide operations 

 

 Multimedia SIMD extensions fix the number of data operands in the 

opcode, which has led to the addition of hundreds of instructions in the 

MMX, SSE, and AVX extensions of the x86 architecture. Vector 

architectures have a vector length register that specifies the number of 



operands for  the current operation. These variable-length vector 

registers easily accommodate programs that naturally have shorter vectors 

than the maximum size the architecture supports. 

 Multimedia SIMD does not offer the more sophisticated addressing 

modes of  vector architectures, namely strided accesses and gather-

scatter accesses. These features increase the number of programs that a 

vector compiler can successfully vectorize.  

 Multimedia SIMD usually does not offer the mask registers to support 

conditional execution of elements as in vector architectures. 

 For the x86 architecture, the MMX instructions added in 1996 repurposed 

the 64-bit floating-point registers, so the basic instructions could perform 

eight 8-bit operations or four 16-bit operations simultaneously. These 

were joined by parallel MAX and MIN operations, a wide variety of 

masking and conditional instructions, operations typically found in digital 

signal processors, and ad hoc instructions that were believed to be useful 

in important media libraries. 

 The Streaming SIMD Extensions (SSE) successor in 1999 added separate 

registers that were 128 bits wide, so now instructions could 

simultaneously perform sixteen 8-bit operations, eight 16-bit operations, 

or four 32-bit operations. It also performed parallel single-precision 

floating-point arithmetic. Since SSE had separate registers, it needed 

separate data transfer instructions. 

 The Advanced Vector Extensions (AVX), added in 2010, doubles the 

width of the registers again to 256 bits and thereby offers instructions that 

double the number of operations on all narrower data types 

 

AVX Instruction    Description_______________________ 

VADDPD  Add four packed double-precision operands 

VSUBPD  Subtract four packed double-precision operands 

VMULPD  Multiply four packed double-precision operands 

VDIVPD  Divide four packed double-precision operands 

VFMADDPD Multiply and add four packed double-precision operands 

VFMSUBPD Multiply and subtract four packed double-precision operands 

VCMPxx  Compare four packed double-precision operands for EQ, NEQ, LT, LE, GT, GE, 



VMOVAPD Move aligned four packed double-precision operands 

VBROADCASTSD Broadcast one double-precision operand to four locations in a 256-bit register 

     Fig: AVX instructions for x86 architecture useful in double-precision floating-point programs. 

 

 

The Roofline Visual Performance Model : 

 

 One visual, intuitive way to compare potential floating-point performance 

of variations of SIMD architectures is the Roofline model [Williams et al. 

20091. It ties together floating-point performance, memory performance, 

and arithmetic intensity in a two-dimensional graph. Arithmetic intensity 

is the ratio of floating-point operations per byte of memory accessed. 

  It can be calculated by taking the total number of floating-point 

operations for a program divided by the total number of data bytes 

transferred to main memory during program execution. 

 Peak floating-point performance can be found using the hardware 

specifications. Many of the kernels in this case study do not fit in on-chip 

caches, so peak memory performance is defined by the memory system 

behind the caches. 

 

 

Fig : Arithmetic intensity 

 Fig below shows the Roofline model for the NEC SX-9 vector processor 

on the left and the Intel Core i7 920 multicore computer on the right. The 



vertical Y-axis is achievable floating-point performance from 2 to 256 

GFLOP/sec. The horizontal X-axis is arithmetic intensity, varying from 

1/8th FLOP/DRAM byte accessed to 16 FLOP/ DRAM byte accessed in 

both graphs. Note that the graph is a log-log scale, and that Rooflines are 

done just once for a computer.  

 

 For a given kernel, we can find a point on the X-axis based on its 

arithmetic intensity. If we drew a vertical line through that point, the 

performance of the kernel on that computer must lie somewhere along 

that line. We can plot a horizontal line showing peak floating-point 

performance of the computer. Obviously, the actual floating-point 

performance can be no higher than the horizontal line, since that is a 

hardware limit. 

 

 How could we plot the peak memory performance? Since the X-axis is 

FLOP/ byte and the Y-axis is FLOP/sec, bytes/sec is just a diagonal line 

at a 45-degree angle in this figure. Hence, we can plot a third line that 

gives the maximum floating-point performance that the memory system 

of that computer can support for a given arithmetic intensity. We can 

express the limits as a formula to plot these lines in the graphs. 

 

         Attainable GFLOPs/sec = Min(Peak Memory BW x Arithmetic Intensity, Peak Floating-Point Perf.)  

 

 The horizontal and diagonal lines give this simple model its name and 

indicate its value. The "Roofline" sets an upper bound on performance of 

a kernel depending on its arithmetic intensity. If we think of arithmetic 

intensity as a pole that hits the roof, either it hits the flat part of the roof, 

which means performance is computationally limited, or it hits the slanted 

part of the roof, which means performance is ultimately limited by 

memory bandwidth. 

 

 The vertical dashed line on the right (arithmetic intensity of 4) is an 

example of the former and the vertical dashed line on the left (arithmetic 



intensity of 1/4) is an example of the latter. Given a Roofline model of a 

computer, you can apply it repeatedly, since it doesn't vary by kernel.  

 

 The "ridge point," where the diagonal and horizontal roofs meet, offers an 

interesting insight into the computer. If it is far to the right, then only 

kernels with very high arithmetic intensity can achieve the maximum 

performance of that computer. If it is far to the left, then almost any 

kernel can potentially hit the maximum performance. 

 

 The peak computational performance of the SX-9 is 2.4x faster than Core 

i7, but the memory performance is l Ox faster. For programs  with an 

arithmetic intensity of 0.25, the SX-9  is l0x faster (40.5 versus 4.1 

GFLOP/sec). The higher memory bandwidth moves the ridge point from 

2.6 in the Core i7 to 0.6 on the SX-9, which means many more programs 

can reach peak computational performance on the vector processor 

 

 

Fig: Roofline model for one NEC SX-9 vector processor on the left and the Intel Core i7 920 multicore 

computer with SIMD Extensions on the right. 

 


