
Cache Coherence
Figure below illustrates the problem and shows how two different processors
can have two different values for the same location. This difficulty s
generally referred to as the cache-coherence problem.

The cache-coherence problem for a single memory location (X),
read and written by two processors (A and B). We initially assume
that neither cache contains the variable and that X has the value 1.
We also assume a write-through cache; a write-back cache adds
some additional but similar complications. After the value of X has
been written by A, A’s cache and the memory both contain the new
value, but B’s cache does not, and if B reads the value of X, it will
receive 1!
Informally, we could say that a memory system is coherent if any read of a
data item returns the most recently written value of that data item. This
definition, although intuitively appealing, is vague and simplistic; the reality
is much more complex. This simple definition contains two different aspects
of memory system behavior, both of which are critical to writing correct
shared-memory programs.
The first aspect, called coherence, defines what values can be returned by a
read.
The second aspect, called consistency, determines when a written value will
be returned by a read. Let’s look at coherence first.
A memory system is coherent if
1.A read by a processor, P, to a location X that follows a write by P to X,
with no writes of X by another processor occurring between the write and
the read by P, always returns the value written by P.
2. A read by a processor to location X that follows a write by another
processor to X returns the written value if the read and write are sufficiently
separated in time and no other writes to X occur between the two accesses.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

3. Writes to the same location are serialized: that is, two writes to the same
location by any two processors are seen in the same order by all processors.
For example, if the values 1 and then 2 are written to a location, processors
can never read the value of the location as 2 and then later read it as 1.
The first property simply preserves program order—we expect this property
to be true even in uniprocessors. The second property defines the notion of
what it means to have a coherent view of memory: If a processor could
continuously read an old data value, we would clearly say that memory was
incoherent. The need for write serialization is more subtle, but equally
important. Suppose we did not serialize writes, and processor P1 writes
location X followed by P2 writing location X. Serializing the writes ensures
that every processor will see the write done by P2 at some point. If we did
not serialize the writes, it might be the case that some processor could see
the write of P2 first and then see the write of P1, maintaining the value
written by P1 indefinitely. The simplest way to avoid such difficulties is to
serialize writes, so that all writes to the same location are seen in the same
order; this property is called write serialization.
Although the three properties just described are sufficient to ensure
coherence, the question of when a written value will be seen is also
important. To see why, observe that we cannot require that a read of X
instantaneously see the value written for X by some other processor. If, for
example, a write of X on one processor precedes a read of X on another
processor by a very small time, it may be impossible to ensure that the read
returns the value of the data written, since the written data may not even
have left the processor at that point. The issue of exactly when a written
value must be seen by a reader is defined by a memory consistency
model.
Coherence and consistency are complementary: Coherence defines the
behavior of reads and writes to the same memory location, while consistency
defines the behavior of reads and writes with respect to accesses to other
memory locations. For simplicity, and because we cannot explain the
problem in full detail at this point, assume that we require that a write does
not complete until all processors have seen the effect of the write and that
the processor does not change the order of any write with any other memory
access. This allows the processor to reorder reads, but forces the processor to
finish a write in program order.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

Basic Schemes for Enforcing Coherence
The coherence problem for multiprocessors and I/O, although similar in
origin, has different characteristics that affect the appropriate solution.
Unlike I/O, where multiple data copies are a rare event—one to be avoided
whenever possible— a program running on multiple processors will
normally have copies of the same data in several caches. In a coherent
multiprocessor, the caches pr ovide both migration and replication of shared
data items.
Coherent caches provide migration, since a data item can be moved to a
local cache and used there in a transparent fashion. This migration reduces
both the latency to access a shared data item that is allocated remotely and
the bandwidth demand on the shared memory.
Coherent caches also provide replication for shared data that is being
simultaneously read, since the caches make a copy of the data item in the
local cache. Replication reduces both latency of access and contention for a
read shared data item. Supporting this migration and replication is critical to
performance in accessing shared data. Thus, rather than trying to solve the
problem by avoiding it in software, small-scale multiprocessors adopt a
hardware solution by introducing a protocol to maintain coherent caches.
The protocols to maintain coherence for multiple processors are called
cachecoherence protocols. Key to implementing a cache-coherence protocol
is tracking the state of any sharing of a data block. There are two classes of
protocols, which use different techniques to track the sharing status, in use:
1. Directory based—The sharing status of a block of physical memory is
kept in just one location, called the directorywhen we discuss scalable
shared-memory architecture.
2.Snooping—Every cache that has a copy of the data from a block of
physical memory also has a copy of the sharing status of the block, and no
centralized state is kept. The caches are usually on a shared-memory bus,
and all cache controllers monitor or snoop on the bus to determine whether
or not they have a copy of a block that is requested on the bus.
Snooping protocols became popular with multiprocessors using
microprocessors and caches attached to a single shared memory because
these protocols can use a preexisting physical connection—the bus to
memory—to interrogate the status of the caches.
Snooping Protocols:
There are two ways to maintain the coherence requirement described in the
previous subsection. One method is to ensure that a processor has exclusive
access to a data item before it writes that item. This style of protocol is
called a write invalidate protocol because it invalidates other copies on a

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

write. It is by far the most common protocol, both for snooping and for
directory schemes. Exclusive access ensures that no other readable or
writable copies of an item exist when the write occurs: all other cached
copies of the item are invalidated.
Figure below shows an example of an invalidation protocol for a snooping
bus with write-back caches in action To see how this protocol ensures
coherence, consider a write followed by a read by another processor: Since
the write requires exclusive access, any copy held by the reading processor
must be invalidated (hence the protocol name). Thus, when the read occurs,
it misses in the cache and is forced to fetch a new copy of the data. For a
write, we require that the writing processor have exclusive access,
preventing any other processor from being able to write simultaneously. If
two processors do attempt to write the same data simultaneously, one of
them wins the race (we’ll see how we decide who wins shortly), causing the
other processor’s copy to be invalidated. For the other processor to complete
its write, it must obtain a new copy of the data, which must now contain the
updated value. Therefore, this protocol enforces write serialization.

An example of an invalidation protocol working on a snooping bus for a
single cache block (X) with write-back caches.
We assume that neither cache initially holds X and that the value of X
in memory is 0. The CPU and memory contents show the value after
the processor and bus activity have both completed. A blank
indicates no activity or no copy cached. When the second miss by B
occurs, CPU A responds with the value canceling the response from
memory. In addition, both the contents of B’s cache and the memory
contents of X are updated. This update of memory, which occurs
when a block becomes shared, is typical in most protocols and
simplifies the protocol.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

A write-invalidate, cache-coherence protocol for a write-back
cache showing the states and state transitions for each block in
the cache. The cache states are shown in circles with any access
permitted by the CPU without a state transition shown in parenthesis
under the name of the state. The stimulus causing a state change is
shown on the transition arcs in regular type, and any bus actions
generated as part of the state transition are shown on the transition
arc in bold. The stimulus actions apply to a block in the cache, not to
a specific address in the cache. Hence, a read miss to a block in the
shared state is a miss for that cache block but for a different address.
The left side of the diagram shows state transitions based on actions
of the CPU associated with this cache; the right side shows
transitions based on operations on the bus. A read miss in the
exclusive or shared state and a write miss in the exclusive state occur
when the address requested by the CPU does not match the address
in the cache block. Such a miss is a standard cache replacement
miss. An attempt to write a block in the shared state always
generates a miss, even if the block is present in the cache, since the
block must be made exclusive. Whenever a bus transaction occurs,
all caches that contain the cache block specified in the bus
transaction take the action dictated by the right half of the diagram.
The protocol assumes that memory provides data on a read miss for

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

a block that is clean in all caches. In actual implementations, these
two sets of state diagrams are combined.
This protocol is somewhat simpler than those in use in existing
multiprocessors.

The alternative to an invalidate protocol is to update all the cached copies of
a data item when that item is written. This type of protocol is called a write
update or write broadcast protocol. To keep the bandwidth requirements of
this protocol under control it is useful to track whether or not a word in the
cache is shared— that is, is contained in other caches. If it is not, then there
is no need to broadcast or update any other caches. Figure 6.8 shows an
example of a write update protocol in operation. In the decade since these
protocols were developed, invalidate has emerged as the winner for the vast
majority of designs. To understand why, let’s look at the qualitative
performance differences. The performance differences between write update
and write invalidate protocols arise from three characteristics:

An example of a write update or broadcast protocol working on
a snooping bus for a single cache
block (X) with write-back caches. We assume that neither cache
initially holds X and that the value of X in memory is 0.
The CPU and memory contents show the value after the processor
and bus activity have both completed. A blank indicates
no activity or no copy cached. When CPU A broadcasts the write,
both the cache in CPU B and the memory location of X
are updated.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

Cache-coherence state diagram with the state transitions
induced by the local processor shown in black and by the bus
activities shown in gray.
The actions in gray in Figure, which handle read and write misses on the
bus, are essentially the snooping component of the protocol. One other
property that is preserved in this protocol, and in most other protocols, is that
any memory block in the shared state is always up to date in the memory.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

