
Cache Coherence 
Figure below illustrates the problem and shows how two different processors 
can have two different values for the same location. This difficulty s 
generally referred to as the cache-coherence problem. 

 
The cache-coherence problem for a single memory location (X), 
read and written by two processors (A and B). We initially assume 
that neither cache contains the variable and that X has the value 1. 
We also assume a write-through cache; a write-back cache adds 
some additional but similar complications. After the value of X has 
been written by A, A’s cache and the memory both contain the new 
value, but B’s cache does not, and if B reads the value of X, it will 
receive 1! 
Informally, we could say that a memory system is coherent if any read of a 
data item returns the most recently written value of that data item. This 
definition, although intuitively appealing, is vague and simplistic; the reality 
is much more complex. This simple definition contains two different aspects 
of memory system behavior, both of which are critical to writing correct 
shared-memory programs.  
The first aspect, called coherence, defines what values can be returned by a 
read.  
The second aspect, called consistency, determines when a written value will 
be returned by a read. Let’s look at coherence first. 
A memory system is coherent if  
1.A read by a processor, P, to a location X that follows a write by P to X, 
with no writes of X by another processor occurring between the write and 
the read by P, always returns the value written by P. 
2. A read by a processor to location X that follows a write by another 
processor to X returns the written value if the read and write are sufficiently 
separated in time and no other writes to X occur between the two accesses. 
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3. Writes to the same location are serialized: that is, two writes to the same 
location by any two processors are seen in the same order by all processors. 
For example, if the values 1 and then 2 are written to a location, processors 
can never read the value of the location as 2 and then later read it as 1. 
The first property simply preserves program order—we expect this property 
to be true even in uniprocessors. The second property defines the notion of 
what it means to have a coherent view of memory: If a processor could 
continuously read an old data value, we would clearly say that memory was 
incoherent. The need for write serialization is more subtle, but equally 
important. Suppose we did not serialize writes, and processor P1 writes 
location X followed by P2 writing location X. Serializing the writes ensures 
that every processor will see the write done by P2 at some point. If we did 
not serialize the writes, it might be the case that some processor could see 
the write of P2 first and then see the write of P1, maintaining the value 
written by P1 indefinitely. The simplest way to avoid such difficulties is to 
serialize writes, so that all writes to the same location are seen in the same 
order; this property is called write serialization. 
Although the three properties just described are sufficient to ensure 
coherence, the question of when a written value will be seen is also 
important. To see why, observe that we cannot require that a read of X 
instantaneously see the value written for X by some other processor. If, for 
example, a write of X on one processor precedes a read of X on another 
processor by a very small time, it may be impossible to ensure that the read 
returns the value of the data written, since the written data may not even 
have left the processor at that point. The issue of exactly when a written 
value must be seen by a reader is defined by a memory consistency 
model. 
Coherence and consistency are complementary: Coherence defines the 
behavior of reads and writes to the same memory location, while consistency 
defines the behavior of reads and writes with respect to accesses to other 
memory locations. For simplicity, and because we cannot explain the 
problem in full detail at this point, assume that we require that a write does 
not complete until all processors have seen the effect of the write and that 
the processor does not change the order of any write with any other memory 
access. This allows the processor to reorder reads, but forces the processor to 
finish a write in program order.   
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Basic Schemes for Enforcing Coherence 
The coherence problem for multiprocessors and I/O, although similar in 
origin, has different characteristics that affect the appropriate solution. 
Unlike I/O, where multiple data copies are a rare event—one to be avoided 
whenever possible— a program running on multiple processors will 
normally have copies of the same data in several caches. In a coherent 
multiprocessor, the caches pr ovide both migration and replication of shared 
data items.  
Coherent caches provide migration, since a data item can be moved to a 
local cache and used there in a transparent fashion. This migration reduces 
both the latency to access a shared data item that is allocated remotely and 
the bandwidth demand on the shared memory. 
Coherent caches also provide replication for shared data that is being 
simultaneously read, since the caches make a copy of the data item in the 
local cache. Replication reduces both latency of access and contention for a 
read  shared data item. Supporting this migration and replication is critical to 
performance in accessing shared data. Thus, rather than trying to solve the 
problem by avoiding it in software, small-scale multiprocessors adopt a 
hardware solution by introducing a protocol to maintain coherent caches. 
The protocols to maintain coherence for multiple processors are called 
cachecoherence protocols. Key to implementing a cache-coherence protocol 
is tracking the state of any sharing of a data block. There are two classes of 
protocols, which use different techniques to track the sharing status, in use: 
1. Directory based—The sharing status of a block of physical memory is 
kept in just one location, called the directorywhen we discuss scalable 
shared-memory architecture. 
2.Snooping—Every cache that has a copy of the data from a block of 
physical memory also has a copy of the sharing status of the block, and no 
centralized state is kept. The caches are usually on a shared-memory bus, 
and all cache controllers monitor or snoop on the bus to determine whether 
or not they have a copy of a block that is requested on the bus.  
Snooping protocols became popular with multiprocessors using 
microprocessors and caches attached to a single shared memory because 
these protocols can use a preexisting physical connection—the bus to 
memory—to interrogate the status of the caches. 
Snooping Protocols: 
There are two ways to maintain the coherence requirement described in the 
previous subsection. One method is to ensure that a processor has exclusive 
access to  a data item before it writes that item. This style of protocol is 
called a write invalidate protocol because it invalidates other copies on a 
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write. It is by far the most common protocol, both for snooping and for 
directory schemes. Exclusive access ensures that no other readable or 
writable copies of an item exist when the write occurs: all other cached 
copies of the item are invalidated.  
Figure below shows an example of an invalidation protocol for a snooping 
bus with write-back caches in action To see how this protocol ensures 
coherence, consider a write followed by a read by another processor: Since 
the write requires exclusive access, any copy held by the reading processor 
must be invalidated (hence the protocol name). Thus, when the read occurs, 
it misses in the cache and is forced to fetch a new copy of the data. For a 
write, we require that the writing processor have exclusive access, 
preventing any other processor from being able to write simultaneously. If 
two processors do attempt to write the same data simultaneously, one of 
them wins the race (we’ll see how we decide who wins shortly), causing the 
other processor’s copy to be invalidated. For the other processor to complete 
its write, it must obtain a new copy of the data, which must now contain the 
updated value. Therefore, this protocol enforces write serialization. 

 
An example of an invalidation protocol working on a snooping bus for a 
single cache block (X) with  write-back caches.  
We assume that neither cache initially holds X and that the value of X 
in memory is 0. The CPU and memory contents show the value after 
the processor and bus activity have both completed. A blank 
indicates no activity or no copy cached. When the second miss by B 
occurs, CPU A responds with the value canceling the response from 
memory. In addition, both the contents of B’s cache and the memory 
contents of X are updated. This update of memory, which occurs 
when a block becomes shared, is typical in most protocols and 
simplifies the protocol. 
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A write-invalidate, cache-coherence protocol for a write-back 
cache showing the states and state transitions for each block in 
the cache. The cache states are shown in circles with any access 
permitted by the CPU without a state transition shown in parenthesis 
under the name of the state. The stimulus causing a state change is 
shown on the transition arcs in regular type, and any bus actions 
generated as part of the state transition are shown on the transition 
arc in bold. The stimulus actions apply to a block in the cache, not to 
a specific address in the cache. Hence, a read miss to a block in the 
shared state is a miss for that cache block but for a different address. 
The left side of the diagram shows state transitions based on actions 
of the CPU associated with this cache; the right side shows 
transitions based on operations on the bus. A read miss in the 
exclusive or shared state and a write miss in the exclusive state occur 
when the address requested by the CPU does not match the address 
in the cache block. Such a miss is a standard cache replacement 
miss. An attempt to write a block in the shared state always 
generates a miss, even if the block is present in the cache, since the 
block must be made exclusive. Whenever a bus transaction occurs, 
all caches that contain the cache block specified in the bus 
transaction take the action dictated by the right half of the diagram. 
The protocol assumes that memory provides data on a read miss for 
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a block that is clean in all caches. In actual implementations, these 
two sets of state diagrams are combined.  
This protocol is somewhat simpler than those in use in existing 
multiprocessors. 
 
The alternative to an invalidate protocol is to update all the cached copies of 
a data item when that item is written. This type of protocol is called a write 
update or write broadcast protocol. To keep the bandwidth requirements of 
this protocol under control it is useful to track whether or not a word in the 
cache is shared— that is, is contained in other caches. If it is not, then there 
is no need to broadcast or update any other caches. Figure 6.8 shows an 
example of a write update protocol in operation. In the decade since these 
protocols were developed, invalidate has emerged as the winner for the vast 
majority of designs. To understand why, let’s look at the qualitative 
performance differences. The performance differences between write update 
and write invalidate protocols arise from three characteristics: 

An example of a write update or broadcast protocol working on 
a snooping bus for a single cache 
block (X) with write-back caches. We assume that neither cache 
initially holds X and that the value of X in memory is 0. 
The CPU and memory contents show the value after the processor 
and bus activity have both completed. A blank indicates 
no activity or no copy cached. When CPU A broadcasts the write, 
both the cache in CPU B and the memory location of X 
are updated. 
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Cache-coherence state diagram with the state transitions 
induced by the local processor shown in black and by the bus 
activities shown in gray. 
The actions in gray in Figure, which handle read and write misses on the  
bus, are essentially the snooping component of the protocol. One other 
property that is preserved in this protocol, and in most other protocols, is that 
any memory block in the shared state is always up to date in the memory. 
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