
Distributed-memory multiprocessor

second group consists of multiprocessors with physically distributed
memory. To support larger processor counts, memory must be distributed
among the processors rather than centralized; otherwise the memory system
would not be able to support the bandwidth demands of a larger number of
processors without incurring excessively long access latency. With the rapid
increase in processor performance and the associated increase in a
processor’s memory bandwidth requirements, the scale of multiprocessor for
which distributed memory is preferred over a single, centralized memory
continues to decrease in number (which is another reason not to use small
and large scale). Of course, the larger number of processors raises the need
for a high bandwidth interconnect. Both direct interconnection networks
(i.e., switches) and indirect networks (typically multidimensional meshes)
are used. Figure 6.2 shows what these multiprocessors look like.
Distributing the memory among the nodes has two major benefits. First, it is
a cost-effective way to scale the memory bandwidth, if most of the accesses
are to the local memory in the node. Second, it reduces the latency for
accesses to the local memory. These two advantages make distributed
memory attractive at smaller processor counts as processors get ever faster
and require more memory bandwidth and lower memory latency. The key
disadvantage for a distributed memory architecture is that communicating
data between processors becomes somewhat more complex and has higher
latency, at least when there is no contention, because the processors no
longer share a single centralized memory. As we will see shortly, the use of
distributed memory leads to two different paradigms for inter processor
communication.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

The basic architecture of a distributed-memory multiprocessor consists of
individual nodes containing a processor, some memory, typically some I/O,
and an interface to an interconnection network that connects all the nodes.
Individual nodes may contain a small number of processors, which may be
interconnected by a small bus or a different interconnection technology,
which is less scalable than the global interconnection network.

Performance of Distributed Shared-Memory Multiprocessors

The performance of a directory-based multiprocessor depends on many of
the same factors that influence the performance of bus-based
multiprocessors (e.g., cache size, processor count, and block size), as well as
the distribution of misses to various locations in the memory hierarchy. The
location of a requested data item depends on both the initial allocation and
the sharing patterns. We start by examining the basic cache performance of
our scientific/technical workload and then look at the effect of different
types of misses. Because the multiprocessor is larger and has longer
latencies than our snooping- based multiprocessor, we begin with a slightly
larger cache (128 KB) and a larger block size of 64 bytes.
In distributed memory architectures, the distribution of memory requests
between local and remote is key to performance, because it affects both the
consumption of global bandwidth and the latency seen by requests.
Therefore, for the figures in this section we separate the cache misses into
local and remote requests. In looking at the figures, keep in mind that, for
these applications, most of the remote misses that arise are coherence
misses, although some capacity misses can also be remote, and in some
applications with poor data distribution, such misses can be significant

The miss rates with these cache sizes are not affected much by changes in
processor count, with the exception of Ocean, where the miss rate rises at 64
processors. This rise results from two factors: an increase in mapping
conflicts in the cache that occur when the grid becomes small, which
leads to a rise in local misses, and an increase in the number of the
coherence misses, which are all remote.

The miss rates change as the cache size is increased, assuming a 64-
processor execution and 64-byte blocks. These miss rates decrease at rates
that we might expect, although the dampening effect caused by little or no
reduction in coherence misses leads to a slower decrease in the remote
misses than in the local misses. By the time we reach the largest cache size

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

shown, 512 KB, the remote miss rate is equal to or greater than the local
miss rate. Larger caches would amplify this trend.
Because these applications have good spatial locality, increases in block size
reduce the miss rate, even for large blocks, although the performance
benefits for going to the largest blocks are small. Furthermore, most of the
improvement in miss rate comes from a reduction in the local misses.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

