
Directory-Based Cache-Coherence Protocols
Just as with a snooping protocol, there are two primary operations that a
directory protocol must implement: handling a read miss and handling a
write to a shared, cache block.

 A directory is added to each node to implement cache
coherence in a distributed-memory multiprocessor. Each
directory is responsible for tracking the caches that share the memory
addresses of the portion of memory in the node. The directory may
communicate with the processor and memory over a common bus, as
shown, or it may have a separate port to memory, or it may be part of
a central node controller through which all intra node and inter node
communications pass.
To implement these operations, a directory must track the state of each cache
block. In a simple protocol, these states could be the following:
* Shared—One or more processors have the block cached, and the value in
memory is up to date (as well as in all the caches).
* Uncached—No processor has a copy of the cache block.
* Exclusive—Exactly one processor has a copy of the cache block and it
has written the block, so the memory copy is out of date. The processor is
called the owner of the block.
In addition to tracking the state of each cache block, we must track the
processors that have copies of the block when it is shared, since they will

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

need to be invalidated on a write. The simplest way to do this is to keep a bit
vector for each memory block. When the block is shared, each bit of the
vector indicates whether the corresponding processor has a copy of that
block. We can also use the bit vector to keep track of the owner of the block
when the block is in the exclusive state. For efficiency reasons, we also track
the state of each cache block at the individual caches.

The basic states of a cache block in a directory-based protocol are exactly
like those in a snooping protocol, and the states in the directory are also
analogous to those we showed earlier. Thus we can start with simple state
diagrams that show the state transitions for an individual cache block and
then examine the state diagram for the directory entry corresponding to each
block in memory. As in the snooping case, these state transition diagrams do
not represent all the details of a coherence protocol; however, the actual
controller is highly dependent on a number of details of the multiprocessor
(message delivery properties, buffering structures, and so on). In this section

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

we present the basic protocol state diagrams

State transition diagram for an individual cache block in a
directorybased
system. Requests by the local processor are shown in black and
those from the home directory are shown in gray. The states are
identical to those in the snooping case, and the transactions are very
similar, with explicit invalidate and write-back requests replacing the
write misses that were formerly broadcast on the bus. As we did for
the snooping controller, we assume that an attempt to write a shared
cache block is treated as a miss; in practice, such a transaction can
be treated as an ownership request or upgrade request and can
deliver ownership without requiring that the cache block be fetched.
We use the same notation as in the last section, with requests coming from
outside the node in gray and actions in bold. The state transitions for an

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

individual cache are caused by read misses, write misses, invalidates, and
data fetch requests; these operations are all shown in Figure above.
An individual cache also generates read and write miss messages that are
sent to the home directory. Read and write misses require data value replies,
and these events wait for replies before changing state.
The operation of the state transition diagram for a cache block in Figure
above is essentially the same as it is for the snooping case: the states are
identical, and the stimulus is almost identical. The write miss operation,
which was broadcast on the bus in the snooping scheme, is replaced by the
data fetch and invalidate operations that are selectively sent by the directory
controller. Like the snooping protocol, any cache block must be in the
exclusive state when it is written and any shared block must be up to date in
memory.
In a directory-based protocol, the directory implements the other half of the
coherence protocol. A message sent to a directory causes two different types
of actions: updates of the directory state, and sending additional messages to
satisfy the request. The states in the directory represent the three standard
states for a block; unlike in a snoopy scheme, however, the directory state
indicates the state of all the cached copies of a memory block, rather than for
a single cache block. The memory block may be uncached by any node,
cached in multiple nodes and readable (shared), or cached exclusively and
writable in exactly one node. In addition to the state of each block, the
directory must track the set of processors that have a copy of a block; we use
a set called Sharers to perform this function. In multiprocessors with less
than 64 nodes (which may represent 2-4 times as many processors), this set
is typically kept as a bit vector. In larger multiprocessors, other techniques,
which we discuss in the Exercises, are needed. Directory requests need to
update the set Sharers and also read the set to perform invalidations.

Figure below shows the actions taken at the directory in response to
messages received. The directory receives three different requests: read
miss, write miss, and data write back. The messages sent in response by the
directory are shown in bold, while the updating of the set Sharers is shown
in bold italics. Because all the stimulus messages are external, all actions are
shown in gray. Our simplified protocol assumes that some actions are
atomic, such as requesting a value and sending it to another node; a realistic
implementation cannot use this assumption. To understand these directory
operations, let’s examine the requests received and actions taken state by

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

state. When a block is in the uncached state the copy in memory is the
current value, so the only possible requests for that block are
* Read miss—The requesting processor is sent the requested data from
memory and the requestor is made the only sharing node. The state of the
block is made shared.
* Write miss—The requesting processor is sent the value and becomes the
Sharing node. The block is made exclusive to indicate that the only valid
copy is cached. Sharers indicates the identity of the owner.
When the block is in the shared state the memory value is up-to-date, so the
same two requests can occur:

The state transition diagram for the directory has the same
states and structure as the transition diagram for an individual
cache. All actions are in gray because they are all externally caused.
Bold indicates the action taken by the directory in response
to the request. Bold italics indicate an action that updates the sharing
set, Sharers, as opposed to sending a message.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

* Read miss—The requesting processor is sent the requested data from
memory and the requesting processor is added to the sharing set.
* Write miss—The requesting processor is sent the value. All processors in
the set Sharers are sent invalidate messages, and the Sharers set is to contain
the identity of the requesting processor. The state of the block is made
exclusive. When the block is in the exclusive state the current value of the
block is held in the cache of the processor identified by the set sharers (the
owner), so there are three possible directory requests:
* Read miss—The owner processor is sent a data fetch message, which
causes the state of the block in the owner’s cache to transition to shared and
causes the owner to send the data to the directory, where it is written to
memory and sent back to the requesting processor. The identity of the
requesting processor is added to the set sharers, which still contains the
identity of the processor that was the owner (since it still has a readable
copy).
* Data write-back—The owner processor is replacing the block and
therefore must write it back. This write-back makes the memory copy up to
date (the home directory essentially becomes the owner), the block is now
uncached, and the sharer set is empty.
* Write miss—The block has a new owner. A message is sent to the old
owner causing the cache to invalidate the block and send the value to the
directory, from which it is sent to the requesting processor, which becomes
the new owner.
Sharers is set to the identity of the new owner, and the state of the block
remains exclusive.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

