
centralized shared-memory architectures

centralized shared-memory architectures , have at most a few dozen
processors in 2000. For multiprocessors with small processor counts, it is
possible for the processors to share a single centralized memory and to
interconnect the processors and memory by a bus. With large caches, the bus
and the single memory, possibly with multiple banks, can satisfy the
memory demands of a small number of processors. By replacing a single bus
with multiple buses, or even a switch, a centralized shared memory design
can be scaled to a few dozen processors. Although scaling beyond that is
technically conceivable, sharing a centralized memory, even organized as
multiple banks, becomes less attractive as the number of processors sharing
it increases. Because there is a single main memory that has a symmetric
relationship to all processors and a uniform access time from any processor,
these multiprocessors are often called symmetric (shared-memory)
multiprocessors (SMPs), and this style of architecture is sometimes called
UMA for uniform memory access . This type of centralized shared-memory
architecture is currently by far the most popular organization. Figure below
shows what these multiprocessors look like.

Basic structure of a centralized shared-memory multiprocessor.

Multiple processor-cache subsystems share the same physical
memory, typically connected by a bus. In larger designs, multiple
buses, or even a switch may be used, but the key architectural
property: uniform access time o all memory from all processors
remains.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

Performance of Symmetric Shared-Memory Multiprocessors

In a bus-based multiprocessor using an invalidation protocol, several
different phenomena combine to determine performance. In
particular, the overall cache performance is a combination of the
behavior of uniprocessor cache miss traffic and the traffic caused by
communication, which results in invalidations and subsequent
cache misses. Changing the processor count, cache size, and block
size can affect these two components of the miss rate in different
ways, leading to overall system behavior that is a combination of the
two effects. The misses that arise from interprocessor
communication, which are often called coherence misses, can be
broken into two separate sources.
The first source are the so-called true sharing misses that arise from
the communication of data through the cache coherence mechanism.
In an invalidation based protocol, the first write by a processor to a
shared cache block causes an invalidation to establish ownership of
that block. Additionally, when another processor attempts to read a
modified word in that cache block, a miss occurs and the resultant
block is transferred. Both these misses are classified as true sharing
misses since they directly arise from the sharing of data among
processors.
The second effect, called false sharing, arises from the use of an
invalidation based coherence algorithm with a single valid bit per
cache block. False sharing occurs when a block is invalidated (and a
subsequent reference causes a miss) because some word in the
block, other than the one being read, is written into. If the word written
into is actually used by the processor that received the invalidate,
then the reference was a true sharing reference and would have
caused a miss independent of the block size or position of words. If,
however, the word being written and the word read are different and
the invalidation does not cause a new value to be communicated, but
only causes an extra cache miss, then it is a false sharing miss. In a
false sharing miss, the block is shared, but no word in the cache
is actually shared, and the miss would not occur if the block size were
a single word. The following Example makes the sharing patterns
clear. True sharing and false sharing miss rates can be affected by a
variety of changes in the cache architecture. Thus, we will find it
useful to decompose not only the uniprocessor and multiprocessor
miss rates, but also the true-sharing and false-sharing miss rates.
Performance Measurements of the Commercial Workload The
performance measurements of the commercial workload, which we
examine in this section, were taken either on a Alphaserver 4100, or
using a configurable simulator modeled after the Alphaserver 4100.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

The Alphaserver 4100 used for these measurements has four
processors, each of which is an Alpha 21164 running at 300 MHz.
Each processor has a three-level cache hierarchy:
* L1 consist of a pair of 8 KB direct-mapped on-chip caches, one for
instruction and one for data. The block size is 32-bytes, and the data
cache is write-through to L2, using a write buffer.
* L2 is a 96 KB on-chip unified 3-way set associative cache with a 32-
byte block size, using write-back.
* L3 is an off-chip, combined, direct-mapped 2 MB caches with 64-
byte blocks also using write-back.
The latency for an access to L2 is 7 cycles, to L3 it is 21 cycles, and
to main memory it is 80 clock cycles (typical without contention).
Cache to cache transfers, which occur on a miss to an exclusive
block held in another cache, require 125 clock cycles. All the
measurement shown in this section were collected by Barroso,
Gharachorloo, and Bugnion We start by looking at the overall CPU
execution for these benchmarks on the 4-processor system; as
discussed on page 650, these benchmarks include substantial
I/O time, which is ignored in the CPU time measurements. We group
the six DSS queries as a single benchmark, reporting the average
behavior. The effective CPI varies widely for these benchmarks, from
a CPI of 1.3 for the Altavista web search to an average CPI of 1.6 for
the DSS workload, to 7.0 for the OLTP workload. Figure shows how
the execution time breaks down into instruction execution, cache and
memory system access time, and other stalls (which are primarily
pipeline resource stalls, but also include TLB and branch mispredict
stalls). Although the performance of the DSS and Altavista workloads
is reasonable, the performance of the OLTP workload is very poor,
due to a poor performance of the memory hierarchy.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

The execution time breakdown for the three programs (OLTP, DSS,
and Altavista) in the commercial workload. The DSS numbers are the
average across six different queries. The CPI varies widely from a
low of 1.3 for Altavista, to 1.61 for the DSS queries, to 7.0 for Oracle.
(Individually, the DSS queries show a CPI range of 1.3 to 1.9.) Other
stalls includes: resource stalls (implemented with replay traps on the
21164), branch mispredict, memory barrier, and TLB misses. For
these benchmarks resource-based pipeline stalls are the dominant
factor.This data combines the behavior of user and kernel accesses.
Only OLTP has a significant fraction of kernel accesses, and the
kernel accesses tend to be better behaved than the user accesses!

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

