
Synchronization
Synchronization mechanisms are typically built with user-level software
routines that rely on hardware-supplied synchronization instructions. For
smaller multiprocessors or low-contention situations, the key hardware
capability is an uninterruptible instruction or instruction sequence capable of
atomically retrieving and changing a value. Software synchronization
mechanisms are then constructed using this capability. For example, we will
see how very efficient spin locks can be built using a simple hardware
synchronization instruction and the coherence mechanism. In larger-scale
multiprocessors or high-contention situations, synchronization can become a
performance bottleneck, because contention introduces additional delays and
because latency is potentially greater in such a multiprocessor.
We will see how contention can arise in implementing some common user-
level synchronization operations and examine more powerful hardware-
supported synchronization primitives that can reduce contention as well as
latency. We begin by examining the basic hardware primitives, then
construct several well-known synchronization routines with the primitives,
and then turn to performance problems in larger multiprocessors and
solutions for those problems.
Basic Hardware Primitives
The key ability we require to implement synchronization in a multiprocessor
is a set of hardware primitives with the ability to atomically read and modify
a memory location. Without such a capability, the cost of building basic
synchronization primitives will be too high and will increase as the
processor count increases. There are a number of alternative formulations of
the basic hardware primitives, all of which provide the ability to atomically
read and modify a location, together with some way to tell if the read and
write were performed atomically. These hardware primitives are the basic
building blocks that are used to build a wide variety of user-level
synchronization operations, including things such as locks and barriers. In
general, architects do not expect users to employ the basic hardware
primitives, but instead expect that the primitives will be used by system
programmers to build a synchronization library, a process that is often
complex and tricky. Let’s start with one such hardware primitive and show
how it can be used to build some basic synchronization operations.
One typical operation for building synchronization operations is the atomic
exchange, which interchanges a value in a register for a value in memory.
To see how to use this to build a basic synchronization operation, assume
that we want to build a simple lock where the value 0 is used to indicate that

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

the lock is free and a 1 is used to indicate that the lock is unavailable. A
processor tries to set the lock by doing an exchange of 1, which is in a
register, with the memory address corresponding to the lock.The value
returned from the exchange instruction is 1 if some other processor had
already claimed access and 0 otherwise. In the latter case, the value is also
changed to be 1, preventing any competing exchange from also retrieving a
0.
For example, consider two processors that each try to do the exchange
simultaneously: This race is broken since exactly one of the processors will
perform the exchange first, returning 0, and the second processor will return
1 when it does the exchange. The key to using the exchange (or swap)
primitive to implement synchronization is that the operation is atomic: the
exchange is indivisible and two simultaneous exchanges will be ordered by
the write serialization mechanisms. It is impossible for two processors trying
to set the synchronization variable in this manner to both think they have
simultaneously set the variable. There are a number of other atomic
primitives that can be used to implement synchronization. They all have the
key property that they read and update a memory value in such a manner
that we can tell whether or not the two operations executed atomically. One
operation, present in many older multiprocessors, is test-and- set, which
tests a value and sets it if the value passes the test. For example, we could
define an operation that tested for 0 and set the value to 1, which can be
used in a fashion similar to how we used atomic exchange. Another atomic
synchronization primitive is fetch-and-increment: it returns the value of a
memory location and atomically increments it. By using the value 0 to
indicate that the synchronization variable is unclaimed, we can use fetch-
and-increment, just as we used exchange. There are other uses of operations
like fetch-and-increment.
An alternative is to have a pair of instructions where the second instruction
returns a value from which it can be deduced whether the pair of instructions
was executed as if the instructions were atomic. The pair of instructions is
effectively atomic if it appears as if all other operations executed by any
processor occurred before or after the pair. Thus, when an instruction pair is
effectively atomic, no other processor can change the value between the
instruction pair. The pair of instructions includes a special load called a load
linked or loadlocked and a special store called a store conditional. These
instructions are used in sequence: If the contents of the memory location
specified by the load linked are changed before the store conditional to the
same address occurs, then the store conditional fails. If the processor does a
context switch between the two instructions, then the store conditional also

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

fails. The store conditional is defined to return a value indicating whether or
not the store was successful. Since the load linked returns the initial value
and the store conditional returns 1 if it succeeds and 0 otherwise, the
following sequence implements an atomic exchange on the memory location
specified by the contents of R1:
try: MOV R3,R4,R0 ;mov exchange value

LL R2,0(R1) ;load linked
SC R3,0(R1) ;store conditional
BEQZ R3,try ;branch store fails
MOV R4,R2 ;put load value in R4

At the end of this sequence the contents of R4 and the memory location
specified by R1 have been atomically exchanged (ignoring any effect from
delayed branches). Any time a processor intervenes and modifies the value
in memory between the LL and SC instructions, the SC returns 0 in R3,
causing the code sequence to try again.
An advantage of the load linked/store conditional mechanism is that it can
be used to build other synchronization primitives. For example, here is an
atomic fetch-and-increment:
try: LL R2,0(R1) ;load linked

DADDUI R3,R2,#1 ;increment
SC R3,0(R1) ;store conditional
BEQZ R3,try ;branch store fails

These instructions are typically implemented by keeping track of the address
specified in the LL instruction in a register, often called the link register. If
an interrupt occurs, or if the cache block matching the address in the link
register is invalidated (for example, by another SC), the link register is
cleared. The SC instruction simply checks that its address matches that in
the link register; if so, the SC succeeds; otherwise, it fails. Since the store
conditional will fail after either another attempted store to the load linked
address or any exception, care must be taken in choosing what instructions
are inserted between the two instructions. In particular, only register-register
instructions can safely be permitted; otherwise, it is possible to create
deadlock situations where the processor can never complete the SC. In
addition, the number of instructions between the load linked and the store
conditional should be small to minimize the probability that either an
unrelated event or a competing processor causes the store conditional to
fail frequently.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

Implementing Locks Using Coherence
Once we have an atomic operation, we can use the coherence mechanisms of
a multiprocessor to implement spin locks: locks that a processor
continuously tries to acquire, spinning around a loop until it suceeds. Spin
locks are used when a programmer expects the lock to be held for a very
short amount of time and when she wants the process of locking to be low
latency when the lock is available. Because spin locks tie up the processor,
waiting in a loop for the lock to become free, they are inappropriate in some
circumstances. The simplest implementation, which we would use if there
were no cache coherence, would keep the lock variables in memory. A
processor could continually try to acquire the lock using an atomic
operation, say exchange, and test whether the exchange returned the lock as
free. To release the lock, the processor simply stores the value 0 to the lock.
Here is the code sequence to lock a spin lock whose address is in R1 using
an atomic exchange:

DADDUI R2,R0,#1
lockit: EXCH R2,0(R1) ;atomic exchange

BNEZ R2,lockit ;already locked?
If our multiprocessor supports cache coherence, we can cache the locks
using the coherence mechanism to maintain the lock value coherently.
Caching locks has two advantages. First, it allows an implementation where
the process of “spinning” (trying to test and acquire the lock in a tight loop)
could be done on a local cached copy rather than requiring a global memory
access on each attempt to acquire the lock. The second advantage comes
from the observation that there is often locality in lock accesses: that is, the
processor that used the lock last will use it again in the near future. In such
cases, the lock value may reside in the cache of that processor, greatly
reducing the time to acquire the lock. Obtaining the first advantage—being
able to spin on a local cached copy rather than generating a memory request
for each attempt to acquire the lock—requires a change in our simple spin
procedure. Each attempt to exchange in the loop directly above requires a
write operation. If multiple processors are attempting to get the lock, each
will generate the write. Most of these writes will lead to write misses, since
each processor is trying to obtain the lock variable in an exclusive state.
Thus we should modify our spin-lock procedure so that it spins by doing
reads on a local copy of the lock until it successfully sees that the lock is
available. Then it attempts to acquire the lock by doing a swap operation. A
processor first reads the lock variable to test its state. A processor keeps
reading and testing until the value of the read indicates that the lock is

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

unlocked. The processor then races against all other processes that were
similarly “spin waiting” to see who can lock the variable first. All processes
use a swap instruction that reads the old value and stores a 1 into the lock
variable. The single winner will see the 0, and the losers will see a 1 that was
placed there by the winner. (The losers will continue to set the variable to
the locked value, but that doesn’t matter.) The winning processor executes
the code after the lock and, when finished, stores a 0 into the lock variable
to release the lock, which starts the race all over again. Here is the code to
perform this spin lock (remember that 0 is unlocked and 1 is locked):

lockit: LD R2,0(R1) ;load of lock

BNEZ R2,lockit ;not available-spin
DADDUI R2,R0,#1 ;load locked value
EXCH R2,0(R1) ;swap
BNEZ R2,lockit ;branch if lock wasn’t 0

Let’s examine how this “spin-lock” scheme uses the cache-coherence
mechanisms. Once the processor with the lock stores a 0 into the lock, all
other caches are invalidated and must fetch the new value to update their
copy of the lock. One such cache gets the copy of the unlocked value (0)
first and performs the swap. When the cache miss of other processors is
satisfied, they find that the variable is already locked, so they must return to
testing and spinning.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

