
Models of Memory Consistency
Cache coherence ensures that multiple processors see a consistent view of
memory. It does not answer the question of how consistent the view of
memory must be. By “:how consistent” we mean, when must a processor see
a value that has been updated by another processor? Since processors
communicate through shared variables (used both for data values and for
synchronization), the question boils down to this: In what order must a
processor observe the data writes of another processor? Since the only way
to “observe the writes of another processor” is through reads, the question
becomes, what properties must be enforced among reads and writes to
different locations by different processors?
Although the question of how consistent memory be seems simple, it is
remarkably complicated, as we can see with a simple example. Here are two
code segments from processes P1 and P2, shown side by side:
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0)...
Assume that the processes are running on different processors, and that
locations A and B are originally cached by both processors with the initial
value of 0. If writes always take immediate effect and are immediately seen
by other processors, it will be impossible for both if-statements (labeled L1
and L2) to evaluate their conditions as true, since reaching the if-statement
means that either A or B must have been assigned the value 1. But suppose
the write invalidate is delayed, and the processor is allowed to continue
during this delay; then it is possible that both P1 and P2 have not seen the
invalidations for B and A (respectively) before they attempt to read the
values. The most straightforward model for memory consistency is called
sequential consistency. Sequential consistency requires that the result of
any execution be the same as if the memory accesses executed by each
processor were kept in order and the accesses among different processors
were arbitrarily interleaved. Sequential consistency eliminates the possibility
of some nonobvious execution in the previous example, because the
assignments must be completed before the if statements are initiated.
The simplest way to implement sequential consistency is to require a
processor to delay the completion of any memory access until all the
invalidations caused by that access are completed. Of course, it is equally
effective to delay the next memory access until the previous one is
completed. Remember that memory consistency involves operations among

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

different variables: the two accesses that must be ordered are actually to
different memory locations. In our example, we must delay the read of A or
B (A==0 or B==0) until the previous write has completed (B=1 or A=1).
Under sequential consistency, we cannot, for example, simply place the
write in a write buffer and continue with the read.
Relaxed Consistency Models:
The key idea in relaxed consistency models is to allow reads and writes to
complete out of order, but to use synchronization operations to enforce
ordering, so that a synchronized program behaves as if the processor were
sequentially consistent. There are a variety of relaxed models that are
classified according to what orderings they relax. The three major sets of
orderings that are relaxed are:
1. The WR ordering: which yields a model known as total store ordering
or processor consistency. Because this ordering retains ordering among
writes, many programs that operate under sequential consistency operate
under this model, without additional synchronization.
2.The WW ordering: which yields a model known as partial store order.
3. The RW and RR orderings: which yields a variety of models
including weak ordering, the Alpha consistency model, the PowerPC
consistency model, and release consistency depending on the details of the
ordering restrictions and how synchronization operations enforce ordering.
By relaxing these orderings, the processor can possibly obtain significant
performance advantages. There are, however, many complexities in
describing relaxed consistency models, including the advantages and
complexities of relaxing different orders, defining precisely what it means
for a write to complete, and deciding when processors can see values that the
processor itself has written.

Create PDF files without this message by purchasing novaPDF printer (http://www.novapdf.com)

http://www.novapdf.com
http://www.novapdf.com

