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The Stack Frame 
 Tree of Stack Frames: Tracing out the entire 

computation of a recursive algorithm, one line of code 
at a time, can get incredibly complex. 

 For this, the tree-of-stack-frames level of abstraction 

 is best 

 The key thing to understand is the difference between 
a particular routine and a particular execution of a 
routine on a particular input instance. A single routine 
can at one moment in time have many executions 
going on. Each such execution is referred to as a stack 
frame 

 

1/1/2014 2 S. NALINI,AP/CSE 



 If each routine makes a number of subroutine calls 
(recursive or not), then the stack frames that get executed 
form a tree 

 

 

 

 

 

 In the example in Figure 8.2, instance A is called first 

 It executes for a while and at some point recursively calls B. 
When B returns, A then executes for a while longer before 
calling H. When H returns, A executes for awhile before 
completing 
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 We have skipped over the details of the execution of B. 
Let’s go back to when instance A calls B. Then B calls C, 
which calls D. D completes; then C calls E. After E, C 
completes. Then B calls F, which calls G. Then G 
completes, F completes, B completes, and A goes on to 
call H. It does get complicated. 

 Stack of Stack Frames: The algorithm is actually 
implemented on a computer by a stack of stack frames. 
What is stored in the computer memory at any given 
point in time is only a single path down the tree. The 
tree represents what occurs throughout time 
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 In Figure 8.2,when instance G is active, A, B, F, and G 
are in the stack. C, D, and E have been removed from 
memory as these have completed. H, I , J , and K have 

 not been started yet. Although we speak of many 
separate stack frames executing on the computer, the 
computer is not a parallel machine. Only the top stack 
frame G is actively being executed. The other instances 
are on hold, waiting for the return of a subroutine call 
that it made. 
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Proving Correctness with Strong Induction 

 Strong Induction: Strong induction is similar to 
induction, except that instead of assuming only S(n − 
1) to prove S(n), you must assume all of S(0), S(1), S(2), 
. . . , S(n − 1). 

 A Statement for Each n: For each value of n ≥ 0, let 
S(n) represent a Boolean statement. For some values of 
n this statement may be true, and for others it 

 may be false. 

 Goal: Our goal is to prove that it is true for every 
value of n, namely that ∀n ≥ 0, S(n). 
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 Proof Outline: Proof by strong induction on n. 

 Induction Hypothesis: For each n ≥ 0, let S(n) be 
the statement that . . . . (It is important to state this 
clearly.) 

 Base Case: Prove that the statement S(0) is true. 

 Induction Step: For each n ≥ 0, prove S(0), S(1), 
S(2), . . . , S(n − 1) ⇒ S(n). 

 Conclusion: By way of induction, we can conclude 
that ∀n ≥ 0, S(n). 
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 Proving the Recursive Algorithm Works: 

 Induction Hypothesis: For each n ≥ 0, let S(n) be the 
statement “The recursive algorithm works for every 
instance of size n.” 

 Goal: Our goal is to prove that ∀n ≥ 0, S(n), i.e. 
that the recursive algorithm works for every 
instance. 

 Proof Outline: The proof is by strong induction 
on n. 

 Base Case: Proving S(0) involves showing that the 
algorithm works for the base cases of size n = 0. 
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 Induction Step: The statement S(0), S(1), S(2), . . . , S(n − 1) ⇒ S(n) 
is proved as follows. First assume that the algorithm works for every 
instance of size strictly smaller than n, and then prove that it works for 
every instance of size n. 

 To prove that the algorithm works for every instance of size n, consider 
 an arbitrary instance of size n. The algorithm constructs subinstances 

that are strictly smaller.  
 By our induction hypothesis we know that our algorithm works for 

these. Hence, the recursive calls return the correct solutions. On the 
friends level of abstraction, we proved that the algorithm constructs 
the correct solutions to our instance from the correct solutions to the 
subinstances. 

 Hence, the algorithm works for this arbitrary instance of size n. The 
 S(n) follows. 
 Conclusion: By way of strong induction, we can conclude that ∀n 

≥ 0, S(n), i.e., the recursive algorithm works for every instance. 
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EXAMPLES OF RECURSIVE ALGORITHMS-  merge 
sort 

 Sorting and Selecting Algorithms 
 The classic divide-and-conquer algorithms aremerge sort 

and quick sort. They both have the following basic 
structure. 

 General Recursive Sorting Algorithm: 
  Take the given list of objects to be sorted (numbers, 

strings, student records, etc.). 
  Split the list into two sublists. 
  Recursively have friends sort each of the two sublists. 
  Combine the two sorted sublists into one entirely sorted 

list. 
 This process leads to four different algorithms, depending 

on the following factors  (see Exercise 9.1.1): 
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 Sizes: Split the list into two sub lists each of size n/2 ,  

 Work: Do you put minimal effort into splitting the list 
but put lots of effort into recombining the sub lists, or 
put lots of effort into splitting the list but put minimal 

 effort into recombining the sub lists? 
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Merge Sort (Minimal Work to Split in Half) 
 This is the classic recursive algorithm. 

 Friend’s Level of Abstraction: Recursively give one 
friend the first half of the input to sort and another 
friend the second half to sort. Then combine these two 
sorted sub lists into one completely sorted list. This 
combining process is referred to as merging.  

 Size: The size of an instance is the number of 
elements in the list. If this is at least two, then the sub 
lists are smaller than the whole list.  On the other 
hand, if the list contains only one element, then by 
default it is already sorted and nothing needs to be 
done 
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 Generalizing the Problem: If the input is assumed to be 
received in an array indexed from 1 to n, then the second half of 
the list is not a valid instance, because it is not indexed 
from1.Hence,we redefine the preconditions of the sorting 
problem to require as input both an array A and a subrange [i, j ]. 
The postcondition is that the specified sublist is to be sorted in 
place. 

 Running Time: Let T(n) be the total time required to sort a list 
of n elements. This total time consists of the time for two 
subinstances of half the size to be sorted, plus (n) time for 
merging the two sublists together. This gives the recurrence 
relation T(n) = 2T(n/2) + (n).. In this example, loga /logb = log 2/ 
log 2 = 1 and f (n) = (n1), so c = 1. Because Loga/logb = c, the 
technique concludes that the time is dominated by all levels and 
T(n) = (f (n) logn) = (n logn). 
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 Tree of Stack Frames: The following is a tree of stack 
frames for a concrete example: 
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ACKERMANN’S FUNCTION  

  If you are wondering just how slowly  a program can 
run, consider the algorithm below. 

 Assume the input parameters n and k are natural 
numbers 

 Algorithm: 
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 Running Time: The only way that the program builds 
up a big number is by continually incrementing it by 
one. Hence, the number of times one is added is at 
least as huge as the value Tk (n) returned. 
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RECURSION ON TREES 
 One key application of recursive algorithms is to perform 

actions on trees, because trees themselves have a recursive 
definition. Terminology for trees is summarized in the 
following table: 
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 Recursive Definition of Tree: A tree is either: 

  an empty tree (zero nodes) or  

  a root node with some subtrees as children. 

 A binary tree is a special kind of tree where each node has a 
right and a left subtree. 
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 Number of Nodes in a Binary Tree 

 We will now develop a recursive algorithm that will 
compute the number of nodes in a binary tree. 

 Specifications: 

 Preconditions: The input is any binary tree. Trees 
with an empty subtree are valid trees. So are trees 
consisting of a single node and the empty tree. 

 Postconditions: The output is the number of 
nodes in the tree.  

 Size: The size of an instance is the number of 
nodes in it. 
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TREE TRAVERSALS 
 A task one needs to be able to perform on a binary tree 

is to traverse it, visiting each node once, in one of three 
defined orders 

 Recursion, on the other hand, provides a very easy and 
slick algorithm for traversing a binary tree. Such a tree 
is composed of three parts. There is the root node, its 
left subtree, and its right subtree. 

 The three classic orders to visit the nodes of a binary 
tree are prefix, infix, and postfix, in which the root is 
visited before, between, or after its left and right 
subtrees are visited. 
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 PreFix visits the nodes in the same order that a depth-
first search finds the nodes. 
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 Simple Examples 

 Here is a list of problems involving binary trees. 

 1. Return themaximum of data fields of nodes. 

 2. Return the height of the tree. 

 3. Return the number of leaves in the tree. (A harder 
one.) 

 4. Copy the tree. 
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 Height: In this problem, your task it to find the height 
of your binary tree. 
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NUMBER OF LEAVES 
 For this, the number of leaves in the entire tree is the sum of the numbers in 

the left and right subtrees. If the tree has one subtree, but the other is empty, 
then this same algorithm still works. If the tree is empty, then it has zero leaves. 
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HEAP SORT AND PRIORITY Q’S 
 Heap sort is a fast sorting algorithm that is easy to implement  
 Completely Balanced Binary Tree: We will visualize the values 

being sorted as 
 stored in a binary tree that is completely balanced, i.e., every level of 

the tree is completely full except for the bottom level, which is filled in 
from the left. 

 Array Implementation of a Balanced Binary TreeIn actuality, the 
values are stored in a simple array A[1, n]. The mapping between the 
visualized tree structure and the actual array structure is done by 
indexing the nodes of the tree 1, 2, 3, . . . , n, starting with the root of 
the tree and filling each level in from left to right. 

  The root is stored in A[1]. 
  The parent of A[i] is A[ i/2]. 
  The left child of A[i] is A[2 x i]. 
  The right child of A[i] is A[2 x i + 1]. 
  The node in the far right of the bottom level is stored in A[n]. 
  If 2i + 1 > n, then the node does not have a right child. 
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 Definition of a Heap: A heap imposes a partial order 
(see Section 14.6) on the set of values, requiring that 
the value of each node be greater than or equal to that 
of each of the node’s children. There are no rules about 
whether the left or the right child is larger. See Figure 
10.3. 

 

 

 
 Maximum at Root: An implication of the heap rules is that the root 

contains the maximum value. The maximum may appear repeatedly in 
other places as well. 
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 The Heapify Problem: 

 Specifications: 

 Precondition: The input is a balanced binary tree such 
that its left and right subtrees are heaps. (That is, it is a 
heap except that its root might not be larger than that 
of its children.) 

 Postcondition: Its values are rearranged in place to 
make it complete heap 
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 Recursive Algorithm: The first task in making this tree 
into a heap is to put its maximum value at the root. See 
Figure 10.4. Because the left and right subtrees are heaps, 
the maxima of these trees are at their roots.  

 Hence, the maximum of the entire tree is either at the root, 
at its left child node, or at its right child node. You find the 
maximum among these three. If the maximum is at the 
root, then you are finished.  

 Otherwise, for the purpose of discussion, assume that the 

 maximum is in the root’s left child. Swap this maximum 
value with that of the root. The root and the right subtree 
now form a heap, but the left subtree might not. 

1/1/2014 36 S. NALINI,AP/CSE 

HEAP SORT AND PRIORITY Q’S 



1/1/2014 37 S. NALINI,AP/CSE 

HEAP SORT AND PRIORITY Q’S 



1/1/2014 38 S. NALINI,AP/CSE 

HEAP SORT AND PRIORITY Q’S 



1/1/2014 39 S. NALINI,AP/CSE 

HEAP SORT AND PRIORITY Q’S 



 The HeapSort Problem: Specifications: 

 Precondition: The input is an array of numbers. 

 Postcondition: Its values are rearranged in place to be in sorted order. 

 Algorithm: The loop invariant is that for some i ∈ [0, n], the n −i 
largest elements have been removed and are sorted on the side, and the 
remaining i elements form a heap. See Figures 10.6 and 10.7. The loop 
invariant is established for i = n by forming a heap from the numbers 
using the MakeHeap algorithm. When i = 0, the values are sorted. 

 Suppose that the loop invariant is true for i. The maximum of the 
remaining values is at the root of the heap. Remove it and put it in its 
sorted place on the left end of the sorted list. Take the bottom right-
hand element of the heap, and fill the newly created hole at the root. 
This maintains the correct shape of the tree. The tree now has the 
property that its left and right subtrees are heaps. Hence, you can use 
Heapify to make it into a heap. This maintains the loop invariant while 
decreasing i by one. 
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PRIORITY QUEUES 
 Priority Queues: Like stacks and queues, priority queues 

are an important ADT. 

 Definition: A priority queue consists of: 

 Data: A set of elements, each of which is associated with an 
integer that is referred to as the priority of the element. 

 Insert an Element: An element, along with its priority, 
is added to the queue.  

 Change Priority: The priority of an element already in 
the queue is changed. The routine is passed a pointer to 
the element within the priority queue and its new priority.  

 Remove an Element: Removes and returns an element 
of the highest priority fromthe queue. 

1/1/2014 44 S. NALINI,AP/CSE 



1/1/2014 45 S. NALINI,AP/CSE 

PRIORITY QUEUES 



EXPRESSION TREE 
 Recursive Definition of an Expression: 

  Single variables x, y, and z and single real values are 
themselves expressions. 

  If f and g are expressions, then f + g, f − g, f ∗ g, and f/g 
are also expressions. 

 Tree Data Structure: The recursive definition of an 
expression directly mirrors that of a binary tree. 
Because of this, a binary tree is a natural data structure 
for storing an expression. (Conversely, you can use an 
expression to represent a binary tree.) 
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