

//

The Stack Frame

Tree of Stack Frames: Tracing out the entire
computation of a recursive algorithm, one line of code
at a time, can get incredibly complex.

For this, the tree-of-stack-frames level of abstraction
is best

The key thing to understand is the difference between
a particular routine and a particular execution of a
routine on a particular input instance. A single routine
can at one moment in time have many executions
going on. Each such execution is referred to as a stack
frame

1/1/2014 S. NALINLAP/CSE 2

/ |

The Stack Frame

If each routine makes a number of subroutine calls
(recursive or not), then the stack frames that get executed
form a tree

A

B
™ — 1 -
| C CF | [] | K
A NN

p| | E| |G

Figure 8.2: Tree of stack frames.

In the example in Figure 8.2, instance A is called first

[t executes for a while and at some point recursively calls B.
When B returns, A then executes for a while longer before
calling H. When H returns, A executes for awhile before
completing

1/1/2014 S. NALINL,AP/CSE 3

1/1/201

—

The Stack Frame

We have skipped over the details of the execution of B.
Let’s go back to when instance A calls B. Then B calls C,
which calls D. D completes; then C calls E. After E, C
completes. Then B calls F, which calls G. Then G
completes, F completes, B completes, and A goes on to
call H. It does get complicated.

/

Stack of Stack Frames: The algorithm is actually
implemented on a computer by a stack of stack frames.
What is stored in the computer memory at any given
point in time is only a single path down the tree. The
tree represents what occurs throughout time

4 S. NALINI,AP/CSE

/

The Stack Frame

In Figure 8.2,when instance G is active, A, B, F, and G
are in the stack. C, D, and E have been removed from
memory as these have completed. H, I, |, and K have

not been started yet. Although we speak of many
separate stack frames executing on the computer, the
computer is not a parallel machine. Only the top stack
frame G is actively being executed. The other instances
are on hold, waiting for the return of a subroutine call
that it made.

1/1/2014 S. NALINL,AP/CSE 5

/

Proving Correctness with Strong Induction

Strong Induction: Strong induction is similar to
induction, except that instead of assuming only S(n -
1) to prove S(n), you must assume all of S(o0), S(1), S(2),
.., S(n-1).

A Statement for Each n: For each value of n = o, let
S(n) represent a Boolean statement. For some values of
n this statement may be true, and for others it

may be false.

Goal: Our goal is to prove that it is true for every
value of n, namely that Vi = o, S(n).

1/1/2014 S. NALINLAP/CSE 6

/ |

Proving Correctness with Strong Induction

1/1/201

Proof Outline: Proof by strong induction on n.

Induction Hypothesis: For each n = o, let S(n) be
the statement that. . . . (It is important to state this
clearly.)

Base Case: Prove that the statement S(o0) is true.

Induction Step: For each n = o, prove S(o), S(1),
S2),...,S(n-1) =S(n).

Conclusion: By way of induction, we can conclude
that vn = o, S(n).

4 S. NALINI,AP/CSE 74

—

Proving Correctness with Strong Induction
Proving the Recursive Algorithm Works:

Induction Hypothesis: For each n = o, let S(n) be the
statement “The recursive algorithm works for every
instance of size n.”

Goal: Our goal is to prove that Vn = o, S(n), i.e.
that the recursive algorithm works for every
instance.

Proof Outline: The proof is by strong induction
on n.

Base Case: Proving S(o) involves showing that the
algorithm works for the base cases of size n = o.

1/1/2014 S. NALINLAP/CSE 8

/ |

Proving Correctness with Strong Induction
Induction Step: The statement S(o), S(1), S(2), ..., S(n-1) = S(n)
is proved as follows. First assume that the algorithm works for every
instance of size strictly smaller than n, and then prove that it works for
every instance of size n.

To prove that the algorithm works for every instance of size n, consider

an arbitrary instance of size n. The algorithm constructs subinstances
that are strictly smaller.

By our induction hypothesis we know that our algorithm works for
these. Hence, the recursive calls return the correct solutions. On the
friends level of abstraction, we proved that the algorithm constructs
the correct solutions to our instance from the correct solutions to the
subinstances.

Hence, the algorithm works for this arbitrary instance of size n. The

S(n) follows.

Conclusion: By way of strong induction, we can conclude that Vn
> 0, S(n), i.e., the recursive algorithm works for every instance.

1/1/2014 S. NALINL,AP/CSE 9

/
EXAMPLES OF RECURSIVE ALGORITHMS-"merge

sort

Sorting and Selecting Algorithms

The classic divide-and-conquer algorithms aremerge sort
and quick sort. They both have the following basic

structure.
General Recursive Sorting Algorithm:

Take the given list of objects to be sorted (numbers,
strings, student records, etc.;

Split the list into two sublists.
Recursively have friends sort each of the two sublists.

Combine the two sorted sublists into one entirely sorted
list.

This process leads to four different algorithms, depending
on the following factors (see Exercise 9.1.1):

1/1/2014 S. NALINLAP/CSE 10

1/1/201

e

EXAMPLES OF RECURSIVE ALGORITHMS

Sizes: Split the list into two sub lists each of size n/2,

Work: Do you put minimal effort into splitting the list
but put lots of effort into recombining the sub lists, or
put lots of effort into splitting the list but put minimal

effort into recombining the sub lists?

4 S. NALINI,AP/CSE

—

Merge Sort (Minimal Work to Split in Half)

This is the classic recursive algorithm.

Friend’s Level of Abstraction: Recursively give one
friend the first half of the input to sort and another
friend the second half to sort. Then combine these two
sorted sub lists into one completely sorted list. This
combining process is referred to as merging.

Size: The size of an instance is the number of
elements in the list. If this is at least two, then the sub
lists are smaller than the whole list. On the other
hand, if the list contains only one element, then by
default it is already sorted and nothing needs to be
done

1/1/2014 S. NALINLAP/CSE 12

/

E PLES OF RECURSIVE ALGORITHMS
Generalizing the Problem: If the input is assumed to be
received in an array indexed from 1 to n, then the second half of
the list is not a valid instance, because it is not indexed
fromi1.Hence,we redefine the preconditions of the sorting
problem to require as input both an array A and a subrange [i, j |.
The postcondition is that the specified sublist is to be sorted in
place.

Running Time: Let T(n) be the total time required to sort a list
of n elements. This total time consists of the time for two
subinstances of half the size to be sorted, plus (n) time for
merging the two sublists together. This gives the recurrence
relation T(n) = 2T(n/2) + (n).. In this example, loga /logb = log 2/
log 2 =1and f (n) = (n1), so ¢ = 1. Because Loga/logb = c, the
technique concludes that the time is dominated by all levels and

T(n) = (f (n) logn) = (n logn).

1/1/2014 S. NALINL,AP/CSE 13

MPLES OF REC

s
MERGE SORT

* Tree of Stack Frames: The following is a tree of stack
frames for a concrete example:

I1:

out: 8 9 10 21 25 40 45 53 97 99 100 105

" >~

25 105 9% 5 45 10

100 21 40 27 B3 o 25 105 99 8 45 10 ‘

In: 100 21 40 97 53 9 In:
out: 9 21 40 53 97 100 out: 8 10 25 45 99 105
T
T
e
I11: 100 21 40 Iz 27 B3 8 In: 25 1056 99 It 8 45 10
out: 21 40 100 out: @ 53 27 cut: 25 9% 105 out: & 10 45

In:
ot :

In:
ot :

1/1/2014

[\

25 105 99 8 45
25 105 a9 8 45 10
1
[}
1
[}
/ n
.
25 105 a8 45
25 105 a8 45

S. NALINLAP/CSE 14

ACKERM

[f you are wondering just how slowly a program can
run, consider the algorithm below.

Assume the input parameters n and k are natural

numbers algorithm A (k, n)
Algorithm: it(k = 0) then -
returni n 41+ 1]

else
ifi 1 = 0) then
ifi £ = 1) then
return(0)
else
return(1)
else
return(Ak — 1, Ak, n — 1))
end if
end if

end algorithm

1/1/2014 S. NALINL,AP/CSE 15

ACKERMANN'’S FUNCTION

Recurrence Relation: Let Ti(n) denote the value returned by A(k, n). This gives
Toin)=24nT0)=0,T.00) =1fork=2,and T;.(n) = Tp_;(T.(n = 1)) for k = 0 and
n = 0.
Solving:
Iyin)=2+n
hin)=Tolhin-1)=2+Tn-1)=4+ hi{n-2)

=2i+iin=-1)=2n+ T,(0) =2n

Linm=T(hn-1)=2-HTn-1)=2*-Tn-2)=2"Tn-i)=2". ,{0) = 2"

Li{n—i) T(0)

a a 3

— 1 — 9 Bn=1) _ 52Bm=2 | a2 a2 o
B(n) = L(Tn-1) =2 =2 =2 =2 _| =2
{ n n

1/1/2014 S. NALINL,AP/CSE 16

ACKERMANN’S FUNCTION

Ti(0) = 1. Ta(l) = Ta(Ta(0)) = Ta(1) = 2% — 2.
1

T(2) = B(G() = B(2) =27 =22 =a.

L6) = H(G2) = Hd) =22 =27 =22 =21 = 65,536,
1-—..‘_,.—-"
4

Note that
2 e L
222 .: 253.535 o IDEl.rﬂﬁ
"-—..__,.—-r
5

while the number of atoms in the universe is less than 10'°°. We have

1(4) = (Ti(3)) = Ti(65,536) = 2°_
e
63,536
Ackermann’s function is defined to be A{n) = T,(n). We see that A{4) is bigger than

any number in the natural world. A(5) is unimaginable.

1/1/2014
S. NALINI,AP/CSE

17

1/1/201

=

ACKERMANN’S FUNCTION

Running Time: The only way that the program builds
up a big number is by continually incrementing it by
one. Hence, the number of times one is added is at
least as huge as the value Tk (n) returned.

4 S. NALINI,AP/CSE 18

/’
RECURSION ON TREES

One key application of recursive algorithms is to perform
actions on trees, because trees themselves have a recursive
definition. Terminology for trees is summarized in the
following table:

1/1/2014 S. NALINL,AP/CSE 19

RECURSION ON TREES

Term Definition
Root Node at the top
RootInfo(tree) The information stored at the root node

Child of node u

Parent of node u
Siblings

Ancestors of node u
Descendants of node u«
Leaf

Height of tree

Depth of node u
Binary tree

leftSubl(tree)
rightSubl(tree)

One of the nodes just under node u

The unique node immediately above node u

Nodes with same parent

The nodes on the unique path from the root to the node u

All the nodes below node u

A node with no children

The maximum level. Some definitions say that a tree with a
single node has height 0, others say height 1. It depends on
whether you count nodes or edges.

The number of nodes (or edges) on the path from the root
to u.

Each node has at most two children. Each of these is
designated as either the right child or the left child.

Left subtree of root

Right subtree of root

1/1/2014

S. NALINI,AP/CSE

20

RECURSION ON TREES

Recursive Definition of Tree: A tree is either:
an empty tree (zero nodes) or
a root node with some subtrees as children.

A binary tree is a special kind of tree where each node has a
right and a left subtree.

Binarv Tree Tree representing (x +y) * z
+ z
\ nlE

|
/\/;/

1/1/2014 S. NALINLAP/CSE 21

///

RECURSION ON TREES

Number of Nodes in a Binary Tree

We will now develop a recursive algorithm that will
compute the number of nodes in a binary tree.

Specifications:

Preconditions: The input is any binary tree. Trees
with an empty subtree are valid trees. So are trees
consisting of a single node and the empty tree.

Postconditions: The output is the number of
nodes in the tree.

Size: The size of an instance is the number of
nodes in it.

1/1/2014 S. NALINLAP/CSE 23

RECURSION ON TREES

Code:
algorithm NuwumberNodes(iree)
{ pre-cond): treeis a binary tree.
{ post-cond): Returns the number of nodes in the tree.
begin
if{ tree = empityTree) then
result(O)
else
result(NumberNodes(lefiSub(iree))
+ NumberNodes(rightSub(tree)) + 1)
end if
end algorithm

Running Time: Because there is one recursive stack frame for each node in the tree
and each stack frame does a constant amount of work, the total time is linear in the
number of nodes in the input tree, i.e., T(n) = G(n). Proved another way, the recur-
rence relation is T(n) = T(ngq) + T(Nygp) + O(1). Plugging the guess T(n) = cn gives
CN = Cljg + Clyjghy + O(1), which is correct because n = nyg + Nyjgy; + 1.

1/1/2014 S. NALINI,AP/CSE 23

—

TREE TRAVERSALS

A task one needs to be able to perform on a binary tree
is to traverse it, visiting each node once, in one of three
defined orders

Recursion, on the other hand, provides a very easy and
slick algorithm for traversing a binary tree. Such a tree
is composed of three parts. There is the root node, its
left subtree, and its right subtree.

The three classic orders to visit the nodes of a binary
tree are prefix, infix, and postfix, in which the root is
visited before, between, or after its left and right
subtrees are visited.

1/1/2014 S. NALINLAP/CSE 24

algorithm Prefix free))

(pre-cond): freeis a binary tree.
(post-cond); Visits the nodes
in prefix order.

if(tree # emptyTree) then
put rootinfoltreg
PreFix{leftSub tree))
PreFix{rightSubree))

end algorithm

TREE TRAVERSALS

algorithm InFix free) algorithm PostFix (tree))
| pre-cond|: treeisabinarytree. { pre-cond): treeis a binary tree.
| post-cond : Visits the nodles (post-cond): Visits the nodes
ininfix order in postfix order.
begin begin
if(free # emptyTree) then if(tree # emptyTree) then
InFix(lftSub{ree) PostFix(leftSubitree))
put rootlnfo tre PostFix(rightSub(tree))
InFix{rightSulxtree)) put rootInfo(tree)
end if end if
end algorithm end algorithm

S. NALINLAP/CSE 25

/_\ ,
TREE TRAVERSALS

The following order is produced if you tracing out these computations on the two
trees displayed below:

PreFix InFix PostFix
531246 123456 214365
*+347 3+4%7 3447F
5 L]
2\
3 6 + 7
<N\ SN
B 4 3 4

1/1/2014 S. NALINLAP/CSE 26

TREE TRAVERSALS

PreFix visits the nodes in the same order that a depth-

first search finds the nodes.
algorithm [terativeTraversal(tree)

{ pre-cond): treeis a binary tree. As usual, each node has a value and pointers to the
roots of its left and right subtrees. In addition, each node has a pointer to its parent.
{ post-cond): Does an infix traversal of tree.

begin
element = rootitree) % Current node in traversal
count = zero % Current count of nodes
loop

{loop-invariant): elementis some node in the tree, and some nodes
have been visited.
if(elemenrhas a left child and it has not been visited) then
element = leftChild(element)
elseif(elemernt has no left child or its left child have been visited
and elemrent has not been visited) then
visit element

1/1/2014 S. NALINL,AP/CSE

27

vvvvvv
qqqqqqq

/ TREE TRAVERSALS

elseif(element’s left subtree and element itself has been visited
and element has aright child and it has not been visited) then
element = rightChild(element)
elseif(element’s left subtree, element itself, and right subtree have been
visited and element has a parent) then
element = parent{element)
elseif{ Everything has been visited and element is the root of the global
tree) then
exit
end if
end loop
end algorithm

1/1/2014 S. NALINL,AP/CSE 28

1/1/201

TREE TRAVERSALS

Simple Examples

Here is a list of problems involving binary trees.
1. Return themaximum of data fields of nodes.
2. Return the height of the tree.

3. Return the number of leaves in the tree. (A harder
one.)

4. Copy the tree.

4 S. NALINL,AP/CSE 29

TREE TRAVERSALS

Maximum: Given a binary tree, your task is to determine its maximum value.

algorithm Max(tree)

(pre-cond): treeis a binary tree.
{ post-cond): Returns the maximum of data fields of nodes.

begin
if(tree = emptyTree) then
result(—oo)
else
result(max(Max(leftSub(tree)), Max{(rightSub(tree)), rootDatal(tree)))
end if

end algorithm

1/1/2014 S. NALINL,AP/CSE

30

TREE TRAVERSALS
Height: In this problem, your task it to find the height

of your binary tree.
algorithm Height(tree)
(pre-cond): treeis a binary tree.
{ post-cond): Returns the height of the tree measured in nodes, e.g., a tree with
one node has height 1.
begin
if(tree = emptyTree) then
result{ 0)

else
result(max{Height{leftSub(tree)), Height{rightSub(tree))) + 1)

end if

end algorithm

1/1/2014 S. NALINI,AP/CSE 31

NUMBER OF LEAVES

For this, the number of leaves in the entire tree is the sum of the numbers in
the left and right subtrees. If the tree has one subtree, but the other is empty,
then this same algorithm still works. If the tree is empty, then it has zero leaves.

algorithm NumberLeaves(tree)
{ pre-cond): treeis a binary tree.
{ post-cond): Returns the number of leaves in the tree.

begin

if(tree = emptyTree) then
result(0)

else if{ leftSub(tree) = emptyTree and rightSub(tree) = emptyTree) then
result(1)

else
result(NumberLeaves(leftSub(tree)) + NumberLeaves(rightSub(tree)))

end if

end algorithm

1/1/2014 S. NALINI,AP/CSE 32

/

/

HEAP SORT AND PRIORITY Q'S

Heap sort is a fast sorting algorithm that is easy to implement

Completely Balanced Binary Tree: We will visualize the values
being sorted as

stored in a binary tree that is completely balanced, i.e., every level of
the tree is completely full except for the bottom level, which is filled in
from the left.

Array Implementation of a Balanced Binary Treeln actuality, the
values are stored in a simple array Af1, n]. The mapping between the
visualized tree structure and the actual array structure is done by
indexing the nodes of the tree 1, 2, 3, . . ., n, starting with the root of
the tree and filling each level in from left to right.

The root is stored in Af1].

The parent of Afi] is Al i/2].

The left child of Afi] is A[2 x i].

The right child of Afi] is A[2 x i + 1].

The node in the far right of the bottom level is stored in A[n].
If 2i + 1> n, then the node does not have a right child.

1/1/2014 S. NALINL,AP/CSE 33

/ 7

HEAP SORT AND PRIORITY Q’S

Definition of a Heap: A heap imposes a partial order
(see Section 14.6) on the set of values, requiring that
the value of each node be greater than or equal to that
of each of the node’s children. There are no rules about
whether the left or the right child is larger. See Figure

O

Figure 10.3: An example of hodes ordered into a heap.

Maximum at Root: An implication of the heap rules is that the root
contains the maximum value. The maximum may appear repeatedly in
other places as well.

1/1/2014 S. NALINI,AP/CSE 34

1/1/201

/ |

HEAP SORT AND PRIORITY Q'S
The Heapify Problem:

Specifications:

Precondition: The input is a balanced binary tree such
that its left and right subtrees are heaps. (That is, it is a

heap except that its root might not be larger than that
of its children.)

Postcondition: Its values are rearranged in place to
make it complete heap

4 S. NALINI,AP/CSE 35

—

HEAP SORT AND PRIORITY Q’S

Recursive Algorithm: The first task in making this tree
into a heap is to put its maximum value at the root. See
Figure 10.4. Because the left and right subtrees are heaps,
the maxima of these trees are at their roots.

Hence, the maximum of the entire tree is either at the root,
at its left child node, or at its right child node. You find the
maximum among these three. If the maximum is at the
root, then you are finished.

Otherwise, for the purpose of discussion, assume that the

maximum is in the root’s left child. Swap this maximum
value with that of the root. The root and the right subtree
now form a heap, but the left subtree might not.

1/1/2014 S. NALINL,AP/CSE 36

HEAP SORT AND PRIORITY Q'S

+ o
ONONE-0
B OO0 @ 6 @5 ao
ol 50

Figure 10.4: An example computation of Heapify.

1/1/2014 S. NALINLAP/CSE 2

- AP SORT

Code:
algorithm Heapifiy(r)

{ pre-cond): The balanced binary tree rooted at A[r] is such that its left
and right subtrees are heaps.

{ post-cond):

Its values are rearranged in place to make it complete
heap.

begin
ifiAlrightchild(r)] is max of {Alr], Alrightchild(r)],
Alleftchild(r)]}) then
swap(A[r], Alrightchildi{r)])
Heapifvirightchild(r))
elseif(A [lefrchild(r)] is max of {A|r], Alrightchild(r)],
Allefichild(r)]}) then
swap(Alr], Allefitchild(r)])
Heapifvilefichild(r))
else %% Alr] is max of {Alr], Alrightchild(r)], Alleftchild(r)]}
exit
end if
end algorithm

Running Time: T(n) =1 T(n/2) + ©(1). From Chapter 27 we know that %ﬁg

EEE 0 and f(n) = ®(n"), so ¢ = 0. Because lig% ¢, we conclude that time is

dominated by all]eve]s and T(n) = ©(f(n)log n) = G(log n).

1/1/2014 S. NALINL,AP/CSE

HEAP SORT AND PRIORITY Q'S

Figure 10.5: An example of the iterative version of MakeHeap.

Code:

algorithm MakeHeap()
{ pre-cond): The input is an array of numbers, which can be viewed as a
balanced binary tree of numbers.
{ post-cond): Its values are rearranged in place to make it a heap.
begin

loop k= | &1, | 2] —1, 2] —2,..., 2,1

Heapify(k)

end loop

end algorithm

1/1/2014 S. NALINLAP/CSE

39

/

HEAP SORT AND PRIORITY Q'S

The HeapSort Problem: Specifications:

Precondition: The input is an array of numbers.
Postcondition: Its values are rearranged in place to be in sorted order.

Algorithm: The loop invariant is that for some i € [o, nJ, the n -i
largest elements have been removed and are sorted on the side, and the
remaining i elements form a heap. See Figures 10.6 and 10.7. The loop
invariant is established for i = n by forming a heap from the numbers
using the MakeHeap algorithm. When i = o, the values are sorted.

Suppose that the loop invariant is true for i. The maximum of the
remaining values is at the root of the heap. Remove it and put it in its
sorted place on the left end of the sorted list. Take the bottom right-
hand element of the heap, and fill the newly created hole at the root.
This maintains the correct shape of the tree. The tree now has the
property that its left and right subtrees are heaps. Hence, you can use
Heapify to make it into a heap. This maintains the loop invariant while
decreasing i by one.
1/1/2014 S. NALINLAP/CSE 40

HEAP SORT AND PRIORITY Q'S

23[31]35]57] 1281952 [23]31]35]57

I 2 3 4 56 738 9 123456 738 9

Figure 10.6: The left diagram shows the loop invariant with n —i1 =9 — 5 = 4 of the largest
elements in the array and the remaining 1 = 5 elements forming a heap. The right diagram
emphasizes the fact that though a heap is viewed as being stored in a tree, it is actually
implemented in an array. When some of the elements are in still in the tree and some are in the
array, these views overlap.

1/1/2014 S. NALINL,AP/CSE

41

Fiqure 10.7: An example computation of HeapSort.

1/1/2014 S. NALINL,AP/CSE
42

HEAP SORT AND PRIORITY Q'S

Code:

algorithm HeapSort()

{ pre-cond): The input is an array of numbers.
{ post-cond): Its values are rearranged in place to be in sorted order.

begin
MakeHeap ()
i=n
loop
{loop-invarianty: The n —i largest elements have been re-
moved and are sorted in Ali + 1, 2], and the remaining 7 ele-
ments form a heap in AJ[1l, i].

exit when i = 1

swap (Al root], Ali])

i=i—1

Heapify(root) % On a heap of size i.

end loop
end algorithm

Running Time: MakeHeap takes ®(n) time, heapifying a tree of size i takes time
log(i), for atotal of T(n) = ®@(n) + 3_|_, logi. This sum behaves like an arithmetic
sum. Hence, its total is 7z times its maximum value, i.e., @(nlog n).

1/1/2014 S. NALINLAP/CSE 43

//

PRIORITY QUEUES

Priority Queues: Like stacks and queues, priority queues
are an important ADT.

Definition: A priority queue consists of:

Data: A set of elements, each of which is associated with an
integer that is referred to as the priority of the element.

Insert an Element: An element, along with its priority,
is added to the queue.

Change Priority: The priority of an element already in
the queue is changed. The routine is passed a pointer to
the element within the priority queue and its new priority.

Remove an Element: Removes and returns an element
of the highest priority fromthe queue.

1/1/2014 S. NALINL,AP/CSE 44

PRIORITY QUEUES

Implementations:

Implementation Insert Time Change Time Remove Time
Sorted in an array or linked listby ~ O(n) O(n) 0(1)
priority
Unsorted in anarray or linked list ~ O(1) 0(1) O(n)
separate queue for each
priority level
(To add, go to correct queue; to (1) O(1) O(No. of priorities)
delete, find first nonempty
quete)
Heaps O(log n) O(log n) O(log n)

1/1/2014 S. NALINL,AP/CSE

// |

EXPRESSION TREE

Recursive Definition of an Expression:

Single variables x, y, and z and single real values are
themselves expressions.

If fand g are expressions, then f+ g, f—g, f g, and f/g
are also expressions.

Tree Data Structure: The recursive definition of an
expression directly mirrors that of a binary tree.
Because of this, a binary tree is a natural data structure
for storing an expression. (Conversely, you can use an
expression to represent a binary tree.)

1/1/2014 S. NALINLAP/CSE 46

EXPRESSION TREE

EXAMPLE 10.5.1 Evaluate Expression

This routine evaluates an expression that is represented by a tree. For example, it
can evaluate f = x# (y +7), with xvalue= 2, yvalue =3, and zvalue = 5, and return

2%(3+7) =20.

"\

*
X \ T
ol

1/1/2014 S. NALINL,AP/CSE 47

EXPRESSION TREE

algorithm FEvall f, xvalue, yvalue, zvaliue)

Code:

¢ pre-cond): [is an expression whose only variables are x, y, and =z, and xvalie,
yvvalue, and zvalue are the three real values to assign to these variables.
{ post-cond): The returned value is the evaluation of the expression at these values
for x, y, and z. The expression is unchanged.
begin
if(= a real value) then
result()
else if(f= “x") then
result(xualue)
else if(= "“y") then
result(yuelice)
else if(f= “z") then
result(zualice)
else if(roorOp(f) = “+7) then
resultl Eval{leftSub(tree), xvalie, yvalue, zvalue)
+ Eval(rightSub(tree), xvalue,yvalue, zvalue))
else if(rootOp(f) = “—") then
result(Eval(leftSub(tree), xvalue, yvalue, zvalue)
— Eval(rightSub(tree), xvalue, yvalue, zvalue))
else if(roorOp(f) = “*") then
result(Eval(lefiSub(tree), xvalue, yualue, zvalue)
= Eval(rightSu bl tree), xvalue, yralue, zvalue))
else if(rootOp(f) = “/") then
result(Eval(lefiSub(tree), xvalue, yiualue, zvalue)
S EvalirightSub(tree), xvalue, yraliute, zualue))
end if
end algorithm

1/1/2014 S. NALINL,AP/CSE 48

o iR RO R R R R R B S R R R

e
EXPRESSION TREE

| - |
im

B Cf
Lo fx 7]

Figure 10.8: Four functions and their derivatives. The fourth derivative has been simplified.

1/1/2014 S. NALINLAP/CSE 49

EXPRESSION TREE

EXAMPLE 10.5.3 Simplify Expression

This routine simplifies a given expression. For example, the derivative of x % y with
respect to x will be computed to be 1 * y + x % 0. This should be simplified to y.

Specification:
Preconditions: The input consists of an expression f represented by a tree.

Postconditions: The output is another expression that is a simplification of f. Its
nodes should be separate from those of f, and f should remain unchanged.

Code:
algorithm Simplifyi(f)

{ pre-cond): [isan expression.
{ post-cond): The output is a simplification of this expression.

begin
if{ f = areal value or a single variable) then

result{ Copvi(f))
else % [is of the form (g’ op /)

g = SimplifylleftSub(f))
h = SimplifvirightSub(f))

1/1/2014 S. NALINI,AP/CSE 50

N

EXPRESSION TREE

EXAMPLE 10.5.3 Simplify Expression (cont.)

if(one of the following forms applies:
lsh=h g«l=g 0xh=0 gx0=0
0+h=h g4+0=g g-0=g x-x=0
0/h=0 g/l=¢g 0=0c x/x=1
6¥2=12 6/2=3 6+2=8 6-2=4)then
result(the simplified form)
else
result(gop h)
end if
end if
end algorithm

1/1/2014 S. NALINI,AP/CSE 51

1/1/2014

THANK Yo

S. NALINI,AP/CSE

52

