
1/1/2014 1 S. NALINI,AP/CSE

The Stack Frame
 Tree of Stack Frames: Tracing out the entire

computation of a recursive algorithm, one line of code
at a time, can get incredibly complex.

 For this, the tree-of-stack-frames level of abstraction

 is best

 The key thing to understand is the difference between
a particular routine and a particular execution of a
routine on a particular input instance. A single routine
can at one moment in time have many executions
going on. Each such execution is referred to as a stack
frame

1/1/2014 2 S. NALINI,AP/CSE

 If each routine makes a number of subroutine calls
(recursive or not), then the stack frames that get executed
form a tree

 In the example in Figure 8.2, instance A is called first

 It executes for a while and at some point recursively calls B.
When B returns, A then executes for a while longer before
calling H. When H returns, A executes for awhile before
completing

 1/1/2014 3 S. NALINI,AP/CSE

The Stack Frame

 We have skipped over the details of the execution of B.
Let’s go back to when instance A calls B. Then B calls C,
which calls D. D completes; then C calls E. After E, C
completes. Then B calls F, which calls G. Then G
completes, F completes, B completes, and A goes on to
call H. It does get complicated.

 Stack of Stack Frames: The algorithm is actually
implemented on a computer by a stack of stack frames.
What is stored in the computer memory at any given
point in time is only a single path down the tree. The
tree represents what occurs throughout time

1/1/2014 4 S. NALINI,AP/CSE

The Stack Frame

 In Figure 8.2,when instance G is active, A, B, F, and G
are in the stack. C, D, and E have been removed from
memory as these have completed. H, I , J , and K have

 not been started yet. Although we speak of many
separate stack frames executing on the computer, the
computer is not a parallel machine. Only the top stack
frame G is actively being executed. The other instances
are on hold, waiting for the return of a subroutine call
that it made.

1/1/2014 5 S. NALINI,AP/CSE

The Stack Frame

Proving Correctness with Strong Induction

 Strong Induction: Strong induction is similar to
induction, except that instead of assuming only S(n −
1) to prove S(n), you must assume all of S(0), S(1), S(2),
. . . , S(n − 1).

 A Statement for Each n: For each value of n ≥ 0, let
S(n) represent a Boolean statement. For some values of
n this statement may be true, and for others it

 may be false.

 Goal: Our goal is to prove that it is true for every
value of n, namely that ∀n ≥ 0, S(n).

1/1/2014 6 S. NALINI,AP/CSE

 Proof Outline: Proof by strong induction on n.

 Induction Hypothesis: For each n ≥ 0, let S(n) be
the statement that (It is important to state this
clearly.)

 Base Case: Prove that the statement S(0) is true.

 Induction Step: For each n ≥ 0, prove S(0), S(1),
S(2), . . . , S(n − 1) ⇒ S(n).

 Conclusion: By way of induction, we can conclude
that ∀n ≥ 0, S(n).

1/1/2014 7 S. NALINI,AP/CSE

Proving Correctness with Strong Induction

 Proving the Recursive Algorithm Works:

 Induction Hypothesis: For each n ≥ 0, let S(n) be the
statement “The recursive algorithm works for every
instance of size n.”

 Goal: Our goal is to prove that ∀n ≥ 0, S(n), i.e.
that the recursive algorithm works for every
instance.

 Proof Outline: The proof is by strong induction
on n.

 Base Case: Proving S(0) involves showing that the
algorithm works for the base cases of size n = 0.

1/1/2014 8 S. NALINI,AP/CSE

Proving Correctness with Strong Induction

 Induction Step: The statement S(0), S(1), S(2), . . . , S(n − 1) ⇒ S(n)
is proved as follows. First assume that the algorithm works for every
instance of size strictly smaller than n, and then prove that it works for
every instance of size n.

 To prove that the algorithm works for every instance of size n, consider
 an arbitrary instance of size n. The algorithm constructs subinstances

that are strictly smaller.
 By our induction hypothesis we know that our algorithm works for

these. Hence, the recursive calls return the correct solutions. On the
friends level of abstraction, we proved that the algorithm constructs
the correct solutions to our instance from the correct solutions to the
subinstances.

 Hence, the algorithm works for this arbitrary instance of size n. The
 S(n) follows.
 Conclusion: By way of strong induction, we can conclude that ∀n

≥ 0, S(n), i.e., the recursive algorithm works for every instance.

1/1/2014 9 S. NALINI,AP/CSE

Proving Correctness with Strong Induction

EXAMPLES OF RECURSIVE ALGORITHMS- merge
sort

 Sorting and Selecting Algorithms
 The classic divide-and-conquer algorithms aremerge sort

and quick sort. They both have the following basic
structure.

 General Recursive Sorting Algorithm:
 Take the given list of objects to be sorted (numbers,

strings, student records, etc.).
 Split the list into two sublists.
 Recursively have friends sort each of the two sublists.
 Combine the two sorted sublists into one entirely sorted

list.
 This process leads to four different algorithms, depending

on the following factors (see Exercise 9.1.1):

1/1/2014 10 S. NALINI,AP/CSE

 Sizes: Split the list into two sub lists each of size n/2 ,

 Work: Do you put minimal effort into splitting the list
but put lots of effort into recombining the sub lists, or
put lots of effort into splitting the list but put minimal

 effort into recombining the sub lists?

1/1/2014 11 S. NALINI,AP/CSE

EXAMPLES OF RECURSIVE ALGORITHMS

Merge Sort (Minimal Work to Split in Half)
 This is the classic recursive algorithm.

 Friend’s Level of Abstraction: Recursively give one
friend the first half of the input to sort and another
friend the second half to sort. Then combine these two
sorted sub lists into one completely sorted list. This
combining process is referred to as merging.

 Size: The size of an instance is the number of
elements in the list. If this is at least two, then the sub
lists are smaller than the whole list. On the other
hand, if the list contains only one element, then by
default it is already sorted and nothing needs to be
done

 1/1/2014 12 S. NALINI,AP/CSE

 Generalizing the Problem: If the input is assumed to be
received in an array indexed from 1 to n, then the second half of
the list is not a valid instance, because it is not indexed
from1.Hence,we redefine the preconditions of the sorting
problem to require as input both an array A and a subrange [i, j].
The postcondition is that the specified sublist is to be sorted in
place.

 Running Time: Let T(n) be the total time required to sort a list
of n elements. This total time consists of the time for two
subinstances of half the size to be sorted, plus (n) time for
merging the two sublists together. This gives the recurrence
relation T(n) = 2T(n/2) + (n).. In this example, loga /logb = log 2/
log 2 = 1 and f (n) = (n1), so c = 1. Because Loga/logb = c, the
technique concludes that the time is dominated by all levels and
T(n) = (f (n) logn) = (n logn).

1/1/2014 13 S. NALINI,AP/CSE

EXAMPLES OF RECURSIVE ALGORITHMS

 Tree of Stack Frames: The following is a tree of stack
frames for a concrete example:

1/1/2014 14 S. NALINI,AP/CSE

EXAMPLES OF RECURSIVE ALGORITHMS –
MERGE SORT

ACKERMANN’S FUNCTION

  If you are wondering just how slowly a program can
run, consider the algorithm below.

 Assume the input parameters n and k are natural
numbers

 Algorithm:

1/1/2014 15 S. NALINI,AP/CSE

ACKERMANN’S FUNCTION

1/1/2014 16 S. NALINI,AP/CSE

ACKERMANN’S FUNCTION

1/1/2014 17
S. NALINI,AP/CSE

 Running Time: The only way that the program builds
up a big number is by continually incrementing it by
one. Hence, the number of times one is added is at
least as huge as the value Tk (n) returned.

1/1/2014 18 S. NALINI,AP/CSE

ACKERMANN’S FUNCTION

RECURSION ON TREES
 One key application of recursive algorithms is to perform

actions on trees, because trees themselves have a recursive
definition. Terminology for trees is summarized in the
following table:

1/1/2014 19 S. NALINI,AP/CSE

RECURSION ON TREES

1/1/2014 20 S. NALINI,AP/CSE

 Recursive Definition of Tree: A tree is either:

 an empty tree (zero nodes) or

 a root node with some subtrees as children.

 A binary tree is a special kind of tree where each node has a
right and a left subtree.

1/1/2014 21 S. NALINI,AP/CSE

RECURSION ON TREES

 Number of Nodes in a Binary Tree

 We will now develop a recursive algorithm that will
compute the number of nodes in a binary tree.

 Specifications:

 Preconditions: The input is any binary tree. Trees
with an empty subtree are valid trees. So are trees
consisting of a single node and the empty tree.

 Postconditions: The output is the number of
nodes in the tree.

 Size: The size of an instance is the number of
nodes in it.

1/1/2014 22 S. NALINI,AP/CSE

RECURSION ON TREES

1/1/2014 23 S. NALINI,AP/CSE

RECURSION ON TREES

TREE TRAVERSALS
 A task one needs to be able to perform on a binary tree

is to traverse it, visiting each node once, in one of three
defined orders

 Recursion, on the other hand, provides a very easy and
slick algorithm for traversing a binary tree. Such a tree
is composed of three parts. There is the root node, its
left subtree, and its right subtree.

 The three classic orders to visit the nodes of a binary
tree are prefix, infix, and postfix, in which the root is
visited before, between, or after its left and right
subtrees are visited.

1/1/2014 24 S. NALINI,AP/CSE

1/1/2014 25 S. NALINI,AP/CSE

TREE TRAVERSALS

1/1/2014 26 S. NALINI,AP/CSE

TREE TRAVERSALS

 PreFix visits the nodes in the same order that a depth-
first search finds the nodes.

1/1/2014 27 S. NALINI,AP/CSE

TREE TRAVERSALS

1/1/2014 28 S. NALINI,AP/CSE

TREE TRAVERSALS

 Simple Examples

 Here is a list of problems involving binary trees.

 1. Return themaximum of data fields of nodes.

 2. Return the height of the tree.

 3. Return the number of leaves in the tree. (A harder
one.)

 4. Copy the tree.

1/1/2014 29 S. NALINI,AP/CSE

TREE TRAVERSALS

1/1/2014 30 S. NALINI,AP/CSE

TREE TRAVERSALS

 Height: In this problem, your task it to find the height
of your binary tree.

1/1/2014 31 S. NALINI,AP/CSE

TREE TRAVERSALS

NUMBER OF LEAVES
 For this, the number of leaves in the entire tree is the sum of the numbers in

the left and right subtrees. If the tree has one subtree, but the other is empty,
then this same algorithm still works. If the tree is empty, then it has zero leaves.

1/1/2014 32 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S
 Heap sort is a fast sorting algorithm that is easy to implement
 Completely Balanced Binary Tree: We will visualize the values

being sorted as
 stored in a binary tree that is completely balanced, i.e., every level of

the tree is completely full except for the bottom level, which is filled in
from the left.

 Array Implementation of a Balanced Binary TreeIn actuality, the
values are stored in a simple array A[1, n]. The mapping between the
visualized tree structure and the actual array structure is done by
indexing the nodes of the tree 1, 2, 3, . . . , n, starting with the root of
the tree and filling each level in from left to right.

 The root is stored in A[1].
 The parent of A[i] is A[i/2].
 The left child of A[i] is A[2 x i].
 The right child of A[i] is A[2 x i + 1].
 The node in the far right of the bottom level is stored in A[n].
 If 2i + 1 > n, then the node does not have a right child.

1/1/2014 33 S. NALINI,AP/CSE

 Definition of a Heap: A heap imposes a partial order
(see Section 14.6) on the set of values, requiring that
the value of each node be greater than or equal to that
of each of the node’s children. There are no rules about
whether the left or the right child is larger. See Figure
10.3.

 Maximum at Root: An implication of the heap rules is that the root

contains the maximum value. The maximum may appear repeatedly in
other places as well.

1/1/2014 34 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

 The Heapify Problem:

 Specifications:

 Precondition: The input is a balanced binary tree such
that its left and right subtrees are heaps. (That is, it is a
heap except that its root might not be larger than that
of its children.)

 Postcondition: Its values are rearranged in place to
make it complete heap

1/1/2014 35 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

 Recursive Algorithm: The first task in making this tree
into a heap is to put its maximum value at the root. See
Figure 10.4. Because the left and right subtrees are heaps,
the maxima of these trees are at their roots.

 Hence, the maximum of the entire tree is either at the root,
at its left child node, or at its right child node. You find the
maximum among these three. If the maximum is at the
root, then you are finished.

 Otherwise, for the purpose of discussion, assume that the

 maximum is in the root’s left child. Swap this maximum
value with that of the root. The root and the right subtree
now form a heap, but the left subtree might not.

1/1/2014 36 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

1/1/2014 37 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

1/1/2014 38 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

1/1/2014 39 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

 The HeapSort Problem: Specifications:

 Precondition: The input is an array of numbers.

 Postcondition: Its values are rearranged in place to be in sorted order.

 Algorithm: The loop invariant is that for some i ∈ [0, n], the n −i
largest elements have been removed and are sorted on the side, and the
remaining i elements form a heap. See Figures 10.6 and 10.7. The loop
invariant is established for i = n by forming a heap from the numbers
using the MakeHeap algorithm. When i = 0, the values are sorted.

 Suppose that the loop invariant is true for i. The maximum of the
remaining values is at the root of the heap. Remove it and put it in its
sorted place on the left end of the sorted list. Take the bottom right-
hand element of the heap, and fill the newly created hole at the root.
This maintains the correct shape of the tree. The tree now has the
property that its left and right subtrees are heaps. Hence, you can use
Heapify to make it into a heap. This maintains the loop invariant while
decreasing i by one.

1/1/2014 40 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

1/1/2014 41 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

1/1/2014
42

S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

1/1/2014 43 S. NALINI,AP/CSE

HEAP SORT AND PRIORITY Q’S

PRIORITY QUEUES
 Priority Queues: Like stacks and queues, priority queues

are an important ADT.

 Definition: A priority queue consists of:

 Data: A set of elements, each of which is associated with an
integer that is referred to as the priority of the element.

 Insert an Element: An element, along with its priority,
is added to the queue.

 Change Priority: The priority of an element already in
the queue is changed. The routine is passed a pointer to
the element within the priority queue and its new priority.

 Remove an Element: Removes and returns an element
of the highest priority fromthe queue.

1/1/2014 44 S. NALINI,AP/CSE

1/1/2014 45 S. NALINI,AP/CSE

PRIORITY QUEUES

EXPRESSION TREE
 Recursive Definition of an Expression:

 Single variables x, y, and z and single real values are
themselves expressions.

 If f and g are expressions, then f + g, f − g, f ∗ g, and f/g
are also expressions.

 Tree Data Structure: The recursive definition of an
expression directly mirrors that of a binary tree.
Because of this, a binary tree is a natural data structure
for storing an expression. (Conversely, you can use an
expression to represent a binary tree.)

1/1/2014 S. NALINI,AP/CSE 46

1/1/2014 S. NALINI,AP/CSE 47

EXPRESSION TREE

1/1/2014 S. NALINI,AP/CSE 48

EXPRESSION TREE

1/1/2014 S. NALINI,AP/CSE 49

EXPRESSION TREE

EXPRESSION TREE

1/1/2014 S. NALINI,AP/CSE 50

1/1/2014 S. NALINI,AP/CSE 51

EXPRESSION TREE

1/1/2014 S. NALINI,AP/CSE 52

