
12/30/2013 1 S. NALINI,AP/CSE

UNIT I
ITERATIVE AND RECURSIVE

ALGORITHMS
 Iterative Algorithms: Measures of Progress and Loop

Invariants-Paradigm Shift: Sequence of Actions versus
Sequence of Assertions- Steps to Develop an Iterative
Algorithm-Different Types of Iterative Algorithms--Typical
Errors-Recursion-Forward versus Backward- Towers of
Hanoi Checklist for Recursive Algorithms-The Stack Frame-
Proving Correctness with Strong Induction Examples of
Recursive Algorithms-Sorting and Selecting Algorithms-
Operations on Integers Ackermann’s Function- Recursion
on Trees-Tree Traversals- Examples- Generalizing the
Problem - Heap Sort and Priority Queues-Representing
Expressions.

12/30/2013 2 S. NALINI,AP/CSE

ITERATIVE ALGORITHMS
 A Computational Problem: A specification of a

computational problem uses preconditions and
postconditions to describe for each legal input instance that
the computation might receive, what the required output
or actions are.

 It may be an optimization problem which requires a
solution to be outputted that is “optimal” from among a
huge set of possible solutions for the given input instance.

 Example: The sorting problem is defined as follows:

 Preconditions: The input is a list of n values, including
possible repetitions.

 Post conditions: The output is a list consisting of the same n
values in non decreasing order.

12/30/2013 3 S. NALINI,AP/CSE

ITERATIVE ALGORITHMS
 An Algorithm: An algorithm is a step-by-step procedure

which, starting with an input instance, produces a suitable
output.

 Correctness: An algorithm for the problem is correct if for
every legal input instance, the required output is produced

 Running Time: It is not enough for a computation to eventually
get the correct answer. It must also do so using a reasonable
amount of time and memory space. The running time of an
algorithm is a function from the size n of the input stance given
to a bound on the number of operations the computation
must do.

 The algorithm is said to be feasible if this function is a
polynomial lime Time(n) = Θ(n2), and is said to be
infeasible if the function is an exponential lime Time(n) =
Θ(2n)

12/30/2013 4 S. NALINI,AP/CSE

 An iterative algorithm (Part One) takes one step at a
time, ensuring that each step makes progress while
maintaining the loop invariant.

 A recursive algorithm breaks its instance into smaller
instances, which it gets a friend to solve, and then
combines their solutions into one of its own.

 Optimization problems form an important class of
computational problems.

 Dynamic programming solves a sequence of larger and
larger instances, reusing the previously saved solutions
for the smaller instances, until a solution is obtained
for the given instance.

ITERATIVE ALGORITHMS

12/30/2013 5 S. NALINI,AP/CSE

MEASURES OF PROGRESS AND LOOP INVARIENT
 A measure of progress is how far you are either from your starting location

(point) or from your destination.
 Iterative algorithms example:
 Max(a, b, c)
 PreCond: Input has 3 numbers.
 m = a
 assert: m is max in {a}.
 if(b >m)
 m = b
 end if
 assert: m is max in {a,b}.
 if(c > m)
 m = c
 end if
 assert: m is max in {a,b,c}.
 return(m)
 PostCond: return max in {a,b,c}
 end algorithm

 12/30/2013 6 S. NALINI,AP/CSE

THE STEPS TO DEVELOP AN ITERATIVE
ALGORITHM

 Loop Invariant: A loop invariant expresses important relationships

among the variables that must be true at the start of every iteration and when
the loop terminates.

 If it is true, then the computation is still on the road. If it is false, then the
algorithm has failed.

 The Code Structure: The basic structure of the code is as follows.
 begin routine
 pre-cond
 Code pre-loop % Establish loop invariant
 loop
 <loop-invariant >
 exit when <exit-cond >
 Code loop %Make progress while maintaining the loop invariant
 end loop
 Code post-loop % Clean up loose ends
 post-cond
 end routine

12/30/2013 7 S. NALINI,AP/CSE

THE STEPS TO DEVELOP AN ITERATIVE
ALGORITHM

 Proof of Correctness: The algorithm will work on
all specified inputs and give the correct answer.

Running Time: The algorithm will complete in a
reasonable amount of time.

12/30/2013 8 S. NALINI,AP/CSE

ITERATIVE ALGORITHMS

12/30/2013 9 S. NALINI,AP/CSE

THE STEPS TO DEVELOP AN ITERATIVE
ALGORITHM

 1) Specifications: It describes about the pre- and post
conditions

 —i.e., where are you starting and where is your
destination?

 2) Basic Steps: What basic steps will head you more or
less in the correct direction?

 3) Measure of Progress: You must define a measure of
progress: where are the mile markers along the road?

 i.e How long you have to travel to achieve your destination
 4) The Loop Invariant: You must define a loop

invariant that will give a picture of the state of your
computation when it is at the top of the main loop, in other
words, define the road that you will stay on.

 5) Main Steps: Write pseudocode for every single step

12/30/2013 10 S. NALINI,AP/CSE

THE STEPS TO DEVELOP AN ITERATIVE
ALGORITHM

 6) Make Progress: Each iteration of your main
step must make progress according to your
measure of progress.

 7) Maintain Loop Invariant: Each iteration of your
main step must ensure that the loop invariant is
true again when the computation gets back to the top
of the loop.

 8) Establishing the Loop Invariant: Now that you
have an idea of where you are going, you have a
better idea about how to begin.

12/30/2013 11 S. NALINI,AP/CSE

THE STEPS TO DEVELOP AN ITERATIVE
ALGORITHM

 9) Exit Condition: write the condition exit-cond that causes the
computation to break out of the loop.

 10) Ending: How does the exit condition together with the invariant
ensure that the problem is solved? When at the end of the road but still
on it, how do you produce the required output? You must write the
pseudo code code post-loop to clean up loose ends and to return the
required output.

 11) Termination and Running Time: Where to terminate your
program and calculate the running time of your algorithm

 12) Special Cases: When first attempting to design an algorithm,
you should only consider one general type of input instances. Later,
you must cycle through the steps again considering other types of
instances and special cases. Similarly, test your algorithm by hand on a
number of different examples.

 13) Coding and Implementation Details: Now you are ready to put
all the pieces together and produce pseudocode for the algorithm. It
may be necessary at this point to provide extra implementation details.

 14) Formal Proof: If the above pieces fit together as required,
then your algorithm works.

12/30/2013 12 S. NALINI,AP/CSE

THE STEPS TO DEVELOP AN ITERATIVE
ALGORITHM - DIFFERENT TYPES OF ITERATIVE

ALGORITHMS
 Example - Binary Search
 1) Specifications: An input instance consists of a sorted

list A[1..n] of elements and a key to be searched for.
Elements may be repeated. If the key is in the list, then the
output consists of an index i such that A[i] = key. If the key
is not in the list, then the output reports this.

 2) Basic Steps: Continue to cut the search space in which
the key might be in half.

 4) The Loop Invariant: The algorithm maintains a sublist
A[i.. j] such that if the key is contained in the original list
A[1..n], then it is contained in this narrowed sublist. (If the
element is repeated, then itmight also be outside this
sublist.)

 3) Measure of Progress: The measure of progress is the
number of elements in our sublist, namely j -i + 1.

12/30/2013 13 S. NALINI,AP/CSE

DIFFERENT TYPES OF ITERATIVE
ALGORITHMS - EXAMPLE

 5) Main Steps: Each iteration compares the key with the element
at the center of the sublist. This determines which half of the sublist
the key is not in and hence which half to keep. More formally, let mid
index the element in the middle of our current sublist A[i.. j]. If key ¡Ü
A[mid], then the sublist is narrowed to A[i..mid]. Otherwise, it is
narrowed to A[mid + 1.. j].

 6) Make Progress: The size of the sublist decreases by a factor of
two.

 7) Maintain Loop Invariant: loop-invariant & not exit-cond &
code loop => loop-invariant . The previous loop invariant gives that the
search has been narrowed down to the sublist A[i.. j]. If key > A[mid],
then because the list is sorted, we know that key is not in A[1..mid] and
hence these elements can be thrown away, narrowing the search to
A[mid + 1.. j]. Similarly if key < A[mid]. If key = A[mid], then we could
report that the key has been found. However, the loop invariant is also

 maintained by narrowing the search down to A[i..mid].

 12/30/2013 14 S. NALINI,AP/CSE

 8) Establishing the Loop Invariant: pre-cond & code pre-loop
=> loop-invariant .

 Initially, you obtain the loop invariant by considering the entire
list as the sublist. It trivially follows that if the key is in the entire
list, then it is also in this sublist.

 9) Exit Condition: We exit when the sublist contains one (or
zero) elements.

 10) Ending: loop-invariant & exit-cond & code post-loop => post-
cond . By the exit condition, our sublist contains at most one
element, and by the loop invariant, if the key is contained in the
original list, then the key is contained in this sublist, i.e., must

 be this one element. Hence, the final code tests to see if this one
element is the key. If it is, then its index is returned. If it is not,
then the algorithm reports that the key is not in the list.

12/30/2013 15 S. NALINI,AP/CSE

DIFFERENT TYPES OF ITERATIVE
ALGORITHMS - EXAMPLE

DIFFERENT TYPES OF ITERATIVE
ALGORITHMS - EXAMPLE

 11) Termination and Running Time: The sizes of the sublists
are approximately n, n/2 , n/4 , n/8 , n/16 , . . . , 8, 4, 2, 1.Hence,
only (log n) splits are needed. Each split takes O(1) time. Hence,
the total time is (log n).

 12) Special Cases: A special case to consider is when the key is
not contained in the original list A[1..n]. Note that the loop
invariant carefully takes this case into account. The algorithm
will narrow the sublist down to one (or zero) elements. The
counter positive of the loop invariant then gives that if the key is
not contained in this narrowed sublist, then the key is not
contained in the original list A[1..n].

 13) Coding and Implementation Details: In addition to
testing whether key <=A[mid], each iteration could test to see if
A[mid] is the key. Though finding the key in this way would allow
you to stop early, extensive testing shows that this extra
comparison slows down the computation.

12/30/2013 S. NALINI,AP/CSE 16

TYPICAL ERRORS
 Be Clear: The code specifies the current subinterval A[i.. j]with

two integers i and j . Clearly document whether the sublist includes
the end points i and j or not. It does not matter which, but you must be
consistent. Confusion in details like this is the cause of many bugs.

 Math Details: Small math operations like computing the index of
the middle element of the subinterval A(i.. j) are prone to bugs.
Check for yourself that the answer is mid = i+j

 Make Progress: Be sure that each iteration progress is made in

every special case. For example, in binary search, when the current
sublist has even length, it is reasonable (as done above) to let mid be
the element just to the left of center. It is also reasonable to include the
middle element in the right half of the sublist. However, together these
cause a bug. Given the sublist A[i.. j] = A[3, 4], the middle will be the
element indexed with 3, and the right sublist will be still be A[mid.. j] =
A[3, 4]. If this sublist is kept, no progress will be made, and the
Algorithm will loop forever.

12/30/2013 S. NALINI,AP/CSE 17

TYPICAL ERRORS
Maintain Loop Invariant: Be sure that the loop

invariant is maintained in every special case. For
example, in binary search, it is reasonable to test whether
key < A[mid] or key >=A[mid]. It is also reasonable for it to
cut the sublist A[i.. j] into A[i..mid] and A[mid + 1.. j].
However, together these cause a bug. When key and A[mid]
are equal, the test key < A[mid] will fail, causing the
algorithm to think the key is bigger and to keep the right
half A[mid + 1.. j].However, this skips over the key.

Simple Loop: Code like “i = 1; while(i ¡Ü n) A[i] = 0; i = i
+ 1; end while” is surprisingly prone to the error of being
off by one. The loop invariant “When at the top of the loop,
i indexes the next element to handle” helps a lot.

12/30/2013 S. NALINI,AP/CSE 18

RECURSION – LOOKING FORWARD VS. BACKWARD

 A function call by itself is called “Recursion”

Circular Argument: Recursion involves designing an
algorithm by using it as if it already exists. At first this
looks paradoxical. Suppose, for example, the key to the

 house that you want to get into is in that same house.
If you could get in, you could get the key. Then you
could open the door, so that you could get in. This is a
circular argument. It is not a legal recursive program
because the sub instance is not smaller.

12/30/2013 S. NALINI,AP/CSE 19

 One Problem and a Row of Instances:
 Consider a row of houses. Each house is bigger than the next. Your task is to get

into the biggest one. You are locked out of all the houses. The key to each house
is locked in the house of the next smaller size. The recursive problem consists
in getting into any specified house. Each house in the row is a separate instance
of this problem. To get into my house I must get the key from a smaller house

12/30/2013 S. NALINI,AP/CSE 20

LOOKING FORWARD VS. BACKWARD - EXAMPLE

 The Algorithm: The smallest house is small
enough that one can use brute force to get in. For
example, one could simply lift off the roof. Once in
this house, we can get the key to the next house, which
is then easily opened. Within this house, we can get
the key to the house after that, and so on. Eventually,
we are in the largest house as required.

12/30/2013 S. NALINI,AP/CSE 21

LOOKING FORWARD VS. BACKWARD - EXAMPLE

 Working Forward vs. Backward: An iterative algorithm
works forward. It knows about house i . 1. It uses a loop
invariant to show that this house has been opened. It
searches this house and learns that the key within it is that
for house i. Because of this, it decides that house i would be
a good one to go to next.

 A recursion algorithm works backward. It knows about
house i. It wants to get it open. It determines that the key
for house i is contained in house i . 1. Hence, opening house
i - 1 is a subtask that needs to be accomplished.

 There are two advantages of recursive algorithms over
iterative ones. The first is that sometimes it is easier to
work backward than forward. The second is that a recursive
algorithm is allowed to have more than one subtask to be
solved. This forms a tree of houses to open instead of a row
of houses.

12/30/2013 S. NALINI,AP/CSE 22

LOOKING FORWARD VS. BACKWARD - EXAMPLE

THE TOWERS OF HANOI
  Specification: The puzzle consists of three poles and

a stack of N disks of different sizes.

 Precondition: All the disks are on the first of the three
poles.

 Postcondition: The goal is to move the stack over to
the last pole. See the first and the last parts of Figure
8.1.

12/30/2013 S. NALINI,AP/CSE 23

THE TOWERS OF HANOI
 You are only allowed to take one disk from the top of

the stack on one pole and place it on the top of the
stack on another pole. Another rule is that no disk can
be placed on top of a smaller disk.

 Lost with First Step: The first step must be to move
the smallest disk. But it is by no means clear whether
to move it to the middle or to the last pole.

12/30/2013 S. NALINI,AP/CSE 24

 Divide: Jump into the middle of the computation. One
thing that is clear is that at some point, you must move the
biggest disk from the first pole to the last. In order to do
this, there can be no other disks on either the first or the
last pole. Hence, all the other disks need to be stacked on
the middle pole.

 See the second and the third parts of Figure 8.1. This point
in the computation splits the problem into two sub
problems that must be solved. The first is how to move all
the disks except the largest from the first pole to the
middle. See the first and second parts of Figure 8.1. The
second is how to move these same disks from the middle
pole to the last. See the third and fourth parts of Figure 8.1.

12/30/2013 S. NALINI,AP/CSE 25

THE TOWERS OF HANOI

 Conquer: Together these steps solve the entire problem.
Starting with all disks on the first pole, some how move all
but the largest to the second pole. Then, in one step, move
the largest from the first to the third pole. Finally,
somehow move all but the largest from the second to the
third pole.

 More General Specification: The sub problem of moving
all but the largest disk from the first to the middle pole is
very similar to original towers of Hanoi problem.

 However, it is an instance of a slightly more general
problem, because not all of the disks are moved. To include
this as an instance of our problem, we generalize the
problem as follows.

12/30/2013 S. NALINI,AP/CSE 26

THE TOWERS OF HANOI

 Precondition: The input specifies the number n of
disks to be moved and the roles of the three poles.
These three roles for poles are pole source, pole destination,

 and pole spare. The precondition requires that the
smallest n disks be currently on pole source. It does not
care where the larger disks are.

 Postcondition: The goal is to move these smallest n
disks to , pole destination. Pole Pole spare is available to be
used temporarily. The larger disks are not moved.

12/30/2013 S. NALINI,AP/CSE 27

THE TOWERS OF HANOI

THE TOWERS OF HANOI
 Code:
 algorithm TowersOfHanoi(n, source, destination, spare)
 <pre-cond>: The n smallest disks are on pole source.
 <post-cond>: They are moved to pole destination.

 begin
 if(n ≤ 0)
 Nothing to do
 else
 TowersOfHanoi(n-1, source, spare, destination)
 Move the nth disk from pole source to pole destination.

 TowersOfHanoi(n-1, spare, destination, source)
 end if
 end algorithm
 Running Time: Let T(n) be the time to move n disks. Clearly, T(1)

= 1 and T(n) = 2 · T(n . 1) + 1. Solving this gives T(n) =2n - 1.

12/30/2013 S. NALINI,AP/CSE 28

CHECKLIST FOR RECURSIVE ALGORITHMS
 This section contains a list of things to think about to

make sure that you do not make any of the common
mistakes

 0) The Code Structure: The code does not need to be
much more complex than the following.

 algorithm Alg(a, b, c)

 pre-cond: Here a is a tuple, b an integer, and c a
binary tree.

 post-cond: Outputs x, y, and z, which are useful
objects

12/30/2013 S. NALINI,AP/CSE 29

CHECKLIST FOR RECURSIVE ALGORITHMS

12/30/2013 S. NALINI,AP/CSE 30

CHECKLIST FOR RECURSIVE ALGORITHMS

 1) Specifications: You must clearly define what the
algorithm is supposed to do.

 2) Variables: It is also important to carefully check
that you give variables values of the correct type, e.g., k
is an integer, G is a graph, and so on.

 i) Input: The first line of your code, algorithm Alg(a, b,
c), specifies both the name Alg of the routine and the
names of its inputs. Here a, b, c is the input instance
that you need to find a solution for

 ii)Output: You must return a solution x, y, z to your
instance a, b, c through a return statement return(x, y,
z).

12/30/2013 S. NALINI,AP/CSE 31

 Every path: if your code has if or loop statements,
then every path through the code must end with a
return statement

 Type of Output: Each return statement must return a
solution x, y, z of the right type

 Few Local Variable: An iterative algorithm consists of
a big loop with a set of local variables holding the
current state. Each iteration these variables get
updated.

 3) Tasks to complete: Your mission, given an
arbitrary instance a, b, c meeting the preconditions, is
to construct and return a solution x, y, z that meets the
post condition.

12/30/2013 S. NALINI,AP/CSE 32

CHECKLIST FOR RECURSIVE ALGORITHMS

