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UNIT I  
ITERATIVE AND RECURSIVE 

ALGORITHMS 
 Iterative Algorithms: Measures of Progress and Loop 

Invariants-Paradigm Shift: Sequence of Actions versus 
Sequence of Assertions- Steps to Develop an Iterative 
Algorithm-Different Types of  Iterative Algorithms--Typical 
Errors-Recursion-Forward versus Backward- Towers of 
Hanoi Checklist  for Recursive Algorithms-The Stack Frame-
Proving Correctness with Strong Induction Examples  of 
Recursive Algorithms-Sorting and Selecting Algorithms-
Operations on Integers Ackermann’s Function- Recursion 
on Trees-Tree Traversals- Examples- Generalizing the 
Problem - Heap Sort and Priority Queues-Representing 
Expressions. 
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ITERATIVE ALGORITHMS 
 A Computational Problem: A specification of a 

computational problem uses preconditions  and 
postconditions to describe for each legal input instance that 
the computation  might receive, what the required output 
or actions are.  

 It may be an optimization problem which requires a 
solution to be outputted that is “optimal” from among a 
huge set of possible solutions for the given input instance.  

 Example: The sorting problem is defined as follows: 

 Preconditions: The input is a list of n values, including 
possible repetitions. 

 Post conditions: The output is a list consisting of the same n 
values in non decreasing order. 
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ITERATIVE ALGORITHMS 
 An Algorithm: An algorithm is a step-by-step procedure 

which, starting with an input  instance, produces a suitable 
output.  

 Correctness: An algorithm for the problem is correct if for 
every legal input instance, the required output is produced 

 Running Time: It is not enough for a computation to eventually 
get the correct answer. It must also do so using a reasonable 
amount of time and memory space. The running time of an 
algorithm is a function from the size n of the input stance given 
to a bound on the number of operations the computation 
must do.  

 The algorithm is said to be feasible if this function is a 
polynomial lime Time(n) = Θ(n2 ), and is said to be  
infeasible if the function  is an exponential lime Time(n) = 
Θ(2n ) 
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 An iterative algorithm (Part One) takes one step at a 
time, ensuring that each step makes progress while 
maintaining the loop invariant. 

 A recursive algorithm  breaks its instance into smaller 
instances, which it gets a friend to solve, and then 
combines their solutions into one of its own. 

 Optimization problems  form an important class of 
computational problems. 

 Dynamic programming solves a sequence of larger and 
larger instances, reusing the previously saved solutions 
for the smaller instances, until a solution is obtained 
for the given instance. 

 

 

 

 

ITERATIVE ALGORITHMS 
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MEASURES OF PROGRESS AND LOOP INVARIENT 
 A measure of progress  is how far you are either from your starting location 

(point) or from your destination. 
 Iterative algorithms example: 
 Max(a, b, c) 
 PreCond: Input has 3 numbers. 
 m = a 
 assert: m is max in {a}. 
 if(b >m) 
 m = b 
 end if 
 assert: m is max in {a,b}. 
 if(c > m) 
 m = c 
 end if 
 assert: m is max in {a,b,c}. 
 return(m) 
 PostCond: return max in {a,b,c} 
 end algorithm 
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THE STEPS TO DEVELOP AN ITERATIVE 
ALGORITHM 

 
 Loop Invariant: A loop invariant expresses important relationships 

among the  variables that must be true at the start of every iteration and when 
the loop terminates.  

 If it is true, then the computation is still on the road. If it is false, then the 
algorithm has failed. 

 The Code Structure: The basic structure of the code is as follows. 
 begin routine 
 pre-cond 
 Code pre-loop % Establish loop invariant 
 loop 
 <loop-invariant > 
 exit when <exit-cond > 
 Code loop %Make progress while maintaining the loop invariant 
 end loop 
 Code post-loop % Clean up loose ends 
 post-cond  
 end routine 
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THE STEPS TO DEVELOP AN ITERATIVE 
ALGORITHM 

 Proof of Correctness:  The algorithm will work on 
all specified inputs and give the correct answer. 

Running Time:  The algorithm will complete in a 
reasonable amount of time. 
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ITERATIVE ALGORITHMS 
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THE STEPS TO DEVELOP AN ITERATIVE 
ALGORITHM 

 1) Specifications:  It describes  about the pre- and post 
conditions 

 —i.e., where are you starting and where is your 
destination? 

 2) Basic Steps: What basic steps will head you more or 
less in the correct direction? 

 3) Measure of Progress: You must define a measure of 
progress: where are the mile markers along the road?  

    i.e How long you have to travel to achieve your destination 
 4) The Loop Invariant: You must define a loop 

invariant that will give a picture of the state of your 
computation when it is at the top of the main loop, in other 
words, define the road that you will stay on. 

 5) Main Steps: Write pseudocode for every single step 
 

12/30/2013 10 S. NALINI,AP/CSE 



THE STEPS TO DEVELOP AN ITERATIVE 
ALGORITHM 

 6) Make Progress: Each iteration of your main 
step must make progress according  to your 
measure of progress. 

 7) Maintain Loop Invariant: Each iteration of your 
main step must ensure that the loop invariant is 
true again when the computation gets back to the top 
of the loop. 

 8) Establishing the Loop Invariant: Now that you 
have an idea of where you are going, you have a 
better  idea  about how to begin.  
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THE STEPS TO DEVELOP AN ITERATIVE 
ALGORITHM 

 9) Exit Condition:  write the condition exit-cond  that causes the 
computation  to break out of the loop. 

 10) Ending: How does the exit condition together with the invariant 
ensure that the problem is solved? When at the end of the road but still 
on it, how do you produce the required output? You must write the 
pseudo code  code post-loop to clean up loose ends and to return the 
required output. 

 11) Termination and Running Time:  Where to terminate your 
program and calculate the running time of your algorithm 

 12) Special Cases: When first attempting to design an algorithm, 
you should only  consider one general type of input instances. Later, 
you must cycle through the steps again considering other types of 
instances and special cases. Similarly, test your algorithm by hand on a 
number of different examples. 

 13) Coding and Implementation Details: Now you are ready to put 
all the pieces together and produce pseudocode for the algorithm. It 
may be necessary at this point to provide extra implementation details. 

 14) Formal Proof: If the above pieces fit together as required, 
then your algorithm works. 
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THE STEPS TO DEVELOP AN ITERATIVE 
ALGORITHM  - DIFFERENT TYPES OF ITERATIVE 

ALGORITHMS 
 Example  - Binary Search 
 1) Specifications: An input instance consists of a sorted 

list A[1..n] of elements and  a key to be searched for. 
Elements may be repeated. If the key is in the list, then the 
output consists of an index i such that A[i] = key. If the key 
is not in the list, then the output reports this. 

 2) Basic Steps: Continue to cut the search space in which 
the key might be in half. 

 4) The Loop Invariant: The algorithm maintains a sublist 
A[i.. j ] such that if the key is contained in the original list 
A[1..n], then it is contained in this narrowed sublist. (If  the 
element is repeated, then itmight also be outside this 
sublist.) 

 3) Measure of Progress: The measure of progress is the 
number of elements in our sublist, namely j -i + 1. 
 

12/30/2013 13 S. NALINI,AP/CSE 



DIFFERENT TYPES OF ITERATIVE 
ALGORITHMS - EXAMPLE 

 5) Main Steps: Each iteration compares the key with the element 
at the center of the sublist. This determines which half of the sublist 
the key is not in and hence which half to keep. More formally, let mid 
index the element in the middle of our current sublist A[i.. j ]. If key ¡Ü 
A[mid], then the sublist is narrowed to A[i..mid]. Otherwise, it is 
narrowed to A[mid + 1.. j ]. 

 6) Make Progress: The size of the sublist decreases by a factor of 
two. 

 7) Maintain Loop Invariant: loop-invariant  & not exit-cond  & 
code loop => loop-invariant . The previous loop invariant gives that the 
search has been narrowed down to the sublist A[i.. j ]. If key > A[mid], 
then because the list is sorted, we know that key is not in A[1..mid] and 
hence these elements can be thrown away, narrowing the search to 
A[mid + 1.. j ]. Similarly if key < A[mid]. If key = A[mid], then we could 
report that the key has been found. However, the loop invariant is also 

 maintained by narrowing the search down to A[i..mid]. 
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 8) Establishing the Loop Invariant: pre-cond  & code pre-loop 
=> loop-invariant . 

 Initially, you obtain the loop invariant by considering the entire 
list as the sublist. It trivially follows that if the key is in the entire 
list, then it is also in this sublist. 

 9) Exit Condition: We exit when the sublist contains one (or 
zero) elements. 

 10) Ending: loop-invariant  & exit-cond  & code post-loop => post-
cond . By the exit condition, our sublist  contains at most one 
element, and by the loop invariant, if the key is contained in the 
original list, then the key is contained in this sublist, i.e., must 

 be this one element. Hence, the final code tests to see if this one 
element is the key. If it is, then its index is returned. If it is not, 
then the algorithm reports that the key is not in the list. 
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DIFFERENT TYPES OF ITERATIVE 
ALGORITHMS - EXAMPLE 

 11) Termination and Running Time: The sizes of the sublists 
are approximately  n, n/2 , n/4 , n/8 , n/16 , . . . , 8, 4, 2, 1.Hence, 
only (log n) splits are needed. Each split takes O(1) time. Hence, 
the total time is (log  n). 

 12) Special Cases: A special case to consider is when the key is 
not contained in the  original list A[1..n]. Note that the loop 
invariant carefully takes this case into account. The algorithm 
will narrow the  sublist down to one (or zero) elements. The 
counter positive of the loop invariant then gives that if the key is 
not contained in this narrowed sublist, then the key is not 
contained in the original list A[1..n]. 

 13) Coding and Implementation Details: In addition to 
testing whether key <=A[mid], each iteration could test to see if 
A[mid] is the key. Though finding the key in this way would allow 
you to stop early, extensive testing shows that this extra 
comparison slows down the computation. 
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TYPICAL ERRORS 
 Be Clear: The code specifies the current subinterval A[i.. j ]with 

two integers i and j . Clearly document whether the sublist includes 
the end points i and j or not. It does not matter which, but you must be 
consistent. Confusion in details like this is the cause of many bugs. 
 

 Math Details: Small math operations like computing the index of 
the middle element of the subinterval A(i.. j ) are prone to bugs. 
Check for yourself that the answer is mid = i+j 

 
  Make Progress: Be sure that each iteration progress is made in 

every special case. For example, in binary search, when the current 
sublist has even length, it is reasonable (as done above) to let mid be 
the element just to the left of center. It is also reasonable to include the 
middle element in the right half of the sublist. However, together these 
cause a bug. Given the sublist A[i.. j ] = A[3, 4], the middle will be the 
element indexed with 3, and the right sublist will be still be A[mid.. j ] = 
A[3, 4]. If this sublist is kept, no progress will be made, and the  
Algorithm will loop forever. 
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TYPICAL ERRORS 
Maintain Loop Invariant: Be sure that the loop 

invariant is maintained in every  special case. For 
example, in binary search, it is reasonable to test whether 
key < A[mid] or key >=A[mid]. It is also reasonable for it to 
cut the sublist A[i.. j ] into A[i..mid] and A[mid + 1.. j ]. 
However, together these cause a bug. When key and A[mid] 
are equal, the test key < A[mid] will fail, causing the  
algorithm to think the key is bigger and to keep the right 
half  A[mid + 1.. j ].However, this skips over the key. 

Simple Loop: Code like “i = 1; while(i ¡Ü n) A[i] = 0; i = i 
+ 1; end while” is surprisingly prone to the error of being 
off by one. The loop invariant “When at the top of the loop, 
i indexes the next element to handle” helps a lot. 
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RECURSION – LOOKING FORWARD  VS. BACKWARD 

 A function call by itself is called “Recursion” 

Circular Argument: Recursion involves designing an 
algorithm by using it as if it already exists. At first this 
looks paradoxical. Suppose, for example, the key to the 

 house that you want to get into is in that same house. 
If you could get in, you could get the key. Then you 
could open the door, so that you could get in. This is a 
circular argument. It is not a legal recursive program 
because the sub instance is not smaller. 
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 One Problem and a Row of Instances: 
 Consider a row of houses. Each house is bigger than the next. Your task is to get 

into the biggest one. You are locked out of all the houses. The key to each house 
is locked in the house of the next smaller size. The recursive problem consists 
in getting into any specified house. Each house in the row is a separate instance 
of this problem. To get into my house I must get the key from a smaller house 
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 The Algorithm: The smallest house is small 
enough that one can use brute force to get in. For 
example, one could simply lift off the roof. Once in 
this house, we can get the key to the next house, which 
is then easily opened. Within this house, we can get 
the key to the house after that, and so on. Eventually, 
we are in the largest house as required. 
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 Working Forward vs. Backward: An iterative algorithm 
works forward. It knows  about house i . 1. It uses a loop 
invariant to show that this house has been opened. It 
searches this house and learns that the key within it is that 
for house i. Because of  this, it decides that house i would be 
a good one to go to next. 

 A recursion algorithm works backward. It knows about 
house i. It wants to get it open. It determines that the key 
for house i is contained in house i . 1. Hence, opening house 
i - 1 is a subtask that needs to be accomplished. 

 There are two advantages of recursive algorithms over 
iterative ones. The first is that sometimes it is easier to 
work backward than forward. The second is that a recursive 
algorithm is allowed to have more than one subtask to be 
solved. This forms  a tree of houses to open instead of a row 
of houses. 
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THE TOWERS OF HANOI 
  Specification: The puzzle consists of three poles and 

a stack of N disks of different sizes. 

 Precondition: All the disks are on the first of the three 
poles. 

 

 

 

 

 Postcondition: The goal is to move the stack over to 
the last pole. See the first and the last parts of Figure 
8.1. 
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THE TOWERS OF HANOI 
 You are only allowed to take one disk from the top of 

the stack on one pole and place it on the top of the 
stack on another pole. Another rule is that no disk can 
be placed on top of a smaller disk. 

 Lost with First Step: The first step must be to move 
the smallest disk. But it is by no means clear whether 
to move it to the middle or to the last pole. 
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 Divide: Jump into the middle of the computation. One 
thing that is clear is that at some point, you must move the 
biggest disk from the first pole to the last. In order to do 
this, there can be no other disks on either the first or the 
last pole. Hence, all the other disks need to be stacked on 
the middle pole.  

 See the second and the third parts of Figure 8.1. This point 
in the computation splits the problem into two sub 
problems that must be solved. The first is how to move all 
the disks except the largest from the first pole to the 
middle. See the first and second parts of Figure 8.1. The 
second is how to move these same disks from the middle 
pole to the last. See the third and fourth parts of Figure 8.1. 
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 Conquer: Together these steps solve the entire problem. 
Starting with all disks on the first pole, some how move all 
but the largest to the second pole. Then, in one step, move 
the largest from the first to the third pole. Finally, 
somehow move all but the largest from the second to the 
third pole. 

 More General Specification: The sub problem of moving 
all but the largest disk from the first to the middle pole is 
very similar to original towers of Hanoi problem. 

 However, it is an instance of a slightly more general  
problem, because not all of the disks are moved. To include 
this as an instance of our problem, we generalize the 
problem as follows. 
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 Precondition: The input specifies the number n of 
disks to be moved and the roles of the three poles. 
These three roles for poles are pole source, pole destination, 

 and pole spare. The precondition requires that the 
smallest n disks be currently on pole source. It does not 
care where the larger disks are. 

 Postcondition: The goal is to move these smallest n 
disks to , pole destination. Pole Pole spare is available to be 
used temporarily. The larger disks are not moved. 
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THE TOWERS OF HANOI 
 Code: 
 algorithm  TowersOfHanoi(n, source, destination, spare) 
 <pre-cond>: The n smallest disks are on pole source.   
 <post-cond>: They are moved to pole destination. 

 begin 
     if(n ≤ 0) 
        Nothing to do 
      else 
        TowersOfHanoi(n-1, source, spare, destination) 
        Move the nth disk from pole source to pole destination. 

        TowersOfHanoi(n-1, spare, destination, source) 
    end if 
 end algorithm 
 Running Time: Let T(n) be the time to move n disks. Clearly, T(1) 

= 1 and T(n) = 2 · T(n . 1) + 1. Solving this gives T(n) =2n - 1. 
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CHECKLIST FOR RECURSIVE ALGORITHMS 
 This section contains a list of things to think about to 

make sure that you do not make any of the  common 
mistakes 

 0) The Code Structure: The code does not need to be 
much more complex than the following. 

 algorithm Alg(a, b, c) 

  pre-cond: Here a is a tuple, b an integer, and c a 
binary tree. 

  post-cond: Outputs x, y, and z, which are useful 
objects 
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CHECKLIST FOR RECURSIVE ALGORITHMS 
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CHECKLIST FOR RECURSIVE ALGORITHMS 

 1) Specifications: You must clearly define what the 
algorithm is supposed to do. 

 2) Variables: It is also important to carefully check 
that you give variables values of the correct type, e.g., k 
is an integer, G is a graph, and so on. 

 i) Input: The first line of your code, algorithm Alg(a, b, 
c), specifies both the name Alg of the routine and the 
names of its inputs. Here a, b, c is the input instance 
that you need to find a solution for 

 ii)Output: You must return a solution x, y, z to your 
instance a, b, c through a return statement return(x, y, 
z). 
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 Every path: if your code has if or loop statements, 
then every path through the code must end with a 
return statement 

 Type of Output: Each return statement must return a 
solution x, y, z of the right type  

 Few Local Variable: An iterative algorithm consists of 
a big loop with a set of local variables holding the 
current state. Each iteration these variables get 
updated. 

 3) Tasks to complete: Your mission, given an 
arbitrary instance a, b, c meeting the preconditions, is 
to construct and return a solution x, y, z that meets the 
post condition. 
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